Multi-Target Rydberg Gates via Spatial Blockade Engineering
- URL: http://arxiv.org/abs/2504.15282v2
- Date: Mon, 28 Apr 2025 19:09:42 GMT
- Title: Multi-Target Rydberg Gates via Spatial Blockade Engineering
- Authors: Samuel Stein, Chenxu Liu, Shuwen Kan, Eleanor Crane, Yufei Ding, Ying Mao, Alexander Schuckert, Ang Li,
- Abstract summary: Multi-target gates offer the potential to reduce gate depth in syndrome extraction for quantum error correction.<n>We propose single-control-multi-target CZotimes N gates on a single-species neutral-atom platform.<n>We synthesise smooth control pulses for CZZ and CZZZ gates, achieving fidelities of up to 99.55% and 99.24%, respectively.
- Score: 47.582155477608445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-target gates offer the potential to reduce gate depth in syndrome extraction for quantum error correction. Although neutral-atom quantum computers have demonstrated native multi-qubit gates, existing approaches that avoid additional control or multiple atomic species have been limited to single-target gates. We propose single-control-multi-target CZ^{\otimes N}) gates on a single-species neutral-atom platform that require no extra control and have gate durations comparable to standard CZ gates. Our approach leverages tailored interatomic distances to create an asymmetric blockade between the control and target atoms. Using a GPU-accelerated pulse synthesis protocol, we design smooth control pulses for CZZ and CZZZ gates, achieving fidelities of up to 99.55% and 99.24%, respectively, even in the presence of simulated atom placement errors and Rydberg-state decay. This work presents a practical path to implementing multi-target gates in neutral-atom systems, significantly reducing the resource overhead for syndrome extraction.
Related papers
- Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a
Driven Resonator [42.152052307404]
We propose a simple scheme to cancel stray interactions between qubits.
We numerically show that such a scheme can enable short and high-fidelity entangling gates.
Our architecture is not only ZZ free but also contains no extra noisy components.
arXiv Detail & Related papers (2023-11-02T15:42:02Z) - Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - Heralded nonlocal quantum gates for distributed quantum computation in a decoherence-free subspace [4.513705164435675]
We propose a heralded protocol for implementing nontrivial quantum gates on two stationary qubits coupled to spatially separated cavities.
By dynamically controlling the evolution of the composite system, nonlocal two-qubit quantum gates can be achieved without real excitations of either cavity modes or atoms.
arXiv Detail & Related papers (2023-05-01T03:19:07Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Fast and Robust Geometric Two-Qubit Gates for Superconducting Qubits and
beyond [0.0]
We propose a scheme to realize robust geometric two-qubit gates in multi-level qubit systems.
Our scheme is substantially simpler than STIRAP-based gates that have been proposed for atomic platforms.
We show how our gate can be accelerated using a shortcuts-to-adiabaticity approach.
arXiv Detail & Related papers (2022-08-08T16:22:24Z) - Two-qubit gate in neutral atoms using transitionless quantum driving [0.0]
A neutral-atom system serves as a promising platform for realizing gate-based quantum computing.
The two-qubit entangling gate fidelity lags behind competing platforms such as superconducting systems and trapped ions.
We propose a fast, robust, high-fidelity controlled-Z gate, based on the Rydberg-blockade mechanism, for neutral atoms.
arXiv Detail & Related papers (2022-06-17T17:51:49Z) - Optimal model for fewer-qubit CNOT gates with Rydberg atoms [8.01045083320546]
We report an optimal model about universal two- and three-qubit CNOT gates mediated by excitation to Rydberg states.
Compared to conventional multi-pulse piecewise schemes, our gate can be realized by simultaneous excitation of atoms to the Rydberg states.
arXiv Detail & Related papers (2021-12-16T09:54:52Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - A universal quantum gate set for transmon qubits with strong ZZ
interactions [16.56373732567445]
High-fidelity single- and two-qubit gates are essential building blocks for a fault-tolerant quantum computer.
One limiting factor is the residual ZZ-interaction, which originates from a coupling between computational states and higher-energy states.
We experimentally demonstrate that it can be exploited to produce a universal set of fast single- and two-qubit entangling gates.
arXiv Detail & Related papers (2021-03-23T04:46:55Z) - Systematic error tolerant multiqubit holonomic entangling gates [11.21912040660678]
We propose to realize high-fidelity holonomic $(N+1)$-qubit controlled gates using Rydberg atoms confined in optical arrays or superconducting circuits.
Our study paves a new route to build robust multiqubit gates with Rydberg atoms trapped in optical arrays or with superconducting circuits.
arXiv Detail & Related papers (2020-12-05T03:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.