Insight Into the Collocation of Multi-Source Satellite Imagery for Multi-Scale Vessel Detection
- URL: http://arxiv.org/abs/2403.13698v2
- Date: Thu, 23 May 2024 13:19:23 GMT
- Title: Insight Into the Collocation of Multi-Source Satellite Imagery for Multi-Scale Vessel Detection
- Authors: Tran-Vu La, Minh-Tan Pham, Marco Chini,
- Abstract summary: Ship detection from satellite imagery using Deep Learning (DL) is an indispensable solution for maritime surveillance.
Applying DL models trained on one dataset to others having differences in spatial resolution and radiometric features requires many adjustments.
This paper focused on the DL models trained on datasets that consist of different optical images and a combination of radar and optical data.
- Score: 2.8948274245812327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ship detection from satellite imagery using Deep Learning (DL) is an indispensable solution for maritime surveillance. However, applying DL models trained on one dataset to others having differences in spatial resolution and radiometric features requires many adjustments. To overcome this issue, this paper focused on the DL models trained on datasets that consist of different optical images and a combination of radar and optical data. When dealing with a limited number of training images, the performance of DL models via this approach was satisfactory. They could improve 5-20% of average precision, depending on the optical images tested. Likewise, DL models trained on the combined optical and radar dataset could be applied to both optical and radar images. Our experiments showed that the models trained on an optical dataset could be used for radar images, while those trained on a radar dataset offered very poor scores when applied to optical images.
Related papers
- LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
We present LiDAR-GS, a real-time, high-fidelity re-simulation of LiDAR scans in public urban road scenes.
The method achieves state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - Multi-Object Tracking based on Imaging Radar 3D Object Detection [0.13499500088995461]
This paper presents an approach for tracking surrounding traffic participants with a classical tracking algorithm.
Learning based object detectors have been shown to work adequately on lidar and camera data, while learning based object detectors using standard radar data input have proven to be inferior.
With the improvements to radar sensor technology in the form of imaging radars, the object detection performance on radar was greatly improved but is still limited compared to lidar sensors due to the sparsity of the radar point cloud.
The tracking algorithm must overcome the limited detection quality while generating consistent tracks.
arXiv Detail & Related papers (2024-06-03T05:46:23Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - DART: Implicit Doppler Tomography for Radar Novel View Synthesis [9.26298115522881]
DART is a Neural Radiance Field-inspired method which uses radar-specific physics to create a reflectance and transmittance-based rendering pipeline for range-Doppler images.
In comparison to state-of-the-art baselines, DART synthesizes superior radar range-Doppler images from novel views across all datasets.
arXiv Detail & Related papers (2024-03-06T17:54:50Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models.
Here, we leverage PDMs to generate several radar-based satellite image datasets.
We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue.
arXiv Detail & Related papers (2023-08-31T16:26:17Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
flare artifacts can affect image visual quality and downstream computer vision tasks.
Current methods do not consider automatic exposure and tone mapping in image signal processing pipeline.
We propose a solution to improve the performance of lens flare removal by revisiting the ISP and design a more reliable light sources recovery strategy.
arXiv Detail & Related papers (2023-08-31T04:58:17Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Multi-View Radar Semantic Segmentation [3.2093811507874768]
Automotive radars are low-cost active sensors that measure properties of surrounding objects.
They are seldom used for scene understanding due to the size and complexity of radar raw data.
We propose several novel architectures, and their associated losses, which analyse multiple "views" of the range-angle-Doppler radar tensor to segment it semantically.
arXiv Detail & Related papers (2021-03-30T09:56:41Z) - Radar Artifact Labeling Framework (RALF): Method for Plausible Radar
Detections in Datasets [2.5899040911480187]
We propose a cross sensor Radar Artifact Labeling Framework (RALF) for labeling sparse radar point clouds.
RALF provides plausibility labels for radar raw detections, distinguishing between artifacts and targets.
We validate the results by evaluating error metrics on semi-manually labeled ground truth dataset of $3.28cdot106$ points.
arXiv Detail & Related papers (2020-12-03T15:11:31Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.