Reinforcement Learning for Online Testing of Autonomous Driving Systems: a Replication and Extension Study
- URL: http://arxiv.org/abs/2403.13729v1
- Date: Wed, 20 Mar 2024 16:39:17 GMT
- Title: Reinforcement Learning for Online Testing of Autonomous Driving Systems: a Replication and Extension Study
- Authors: Luca Giamattei, Matteo Biagiola, Roberto Pietrantuono, Stefano Russo, Paolo Tonella,
- Abstract summary: In a recent study, Reinforcement Learning has been shown to outperform alternative techniques for online testing of Deep Neural Network-enabled systems.
This work is a replication and extension of that empirical study.
Results show that our new RL agent is able to converge to an effective policy that outperforms random testing.
- Score: 15.949975158039452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a recent study, Reinforcement Learning (RL) used in combination with many-objective search, has been shown to outperform alternative techniques (random search and many-objective search) for online testing of Deep Neural Network-enabled systems. The empirical evaluation of these techniques was conducted on a state-of-the-art Autonomous Driving System (ADS). This work is a replication and extension of that empirical study. Our replication shows that RL does not outperform pure random test generation in a comparison conducted under the same settings of the original study, but with no confounding factor coming from the way collisions are measured. Our extension aims at eliminating some of the possible reasons for the poor performance of RL observed in our replication: (1) the presence of reward components providing contrasting or useless feedback to the RL agent; (2) the usage of an RL algorithm (Q-learning) which requires discretization of an intrinsically continuous state space. Results show that our new RL agent is able to converge to an effective policy that outperforms random testing. Results also highlight other possible improvements, which open to further investigations on how to best leverage RL for online ADS testing.
Related papers
- Hybrid Inverse Reinforcement Learning [34.793570631021005]
inverse reinforcement learning approach to imitation learning is a double-edged sword.
We propose using hybrid RL -- training on a mixture of online and expert data -- to curtail unnecessary exploration.
We derive both model-free and model-based hybrid inverse RL algorithms with strong policy performance guarantees.
arXiv Detail & Related papers (2024-02-13T23:29:09Z) - Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
It is argued that the commonly used action matching principle is more like an explanation of deep neural networks (DNNs) than the interpretation of RL agents.
We propose to consider rewards, the essential objective of RL agents, as the essential objective of interpreting RL agents.
We verify and evaluate our method on the Atari 2600 games as well as Duckietown, a challenging self-driving car simulator environment.
arXiv Detail & Related papers (2023-09-04T09:09:54Z) - Reinforcement learning informed evolutionary search for autonomous
systems testing [15.210312666486029]
We propose augmenting the evolutionary search (ES) with a reinforcement learning (RL) agent trained using surrogate rewards derived from domain knowledge.
In our approach, known as RIGAA, we first train an RL agent to learn useful constraints of the problem and then use it to produce a certain part of the initial population of the search algorithm.
We evaluate RIGAA on two case studies: maze generation for an autonomous ant robot and road topology generation for an autonomous vehicle lane keeping assist system.
arXiv Detail & Related papers (2023-08-24T13:11:07Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - A Comparison of Reinforcement Learning Frameworks for Software Testing
Tasks [14.22330197686511]
Deep Reinforcement Learning (DRL) has been successfully employed in complex testing tasks such as game testing, regression testing, and test case prioritization.
DRL frameworks offer well-maintained implemented state-of-the-art DRL algorithms to facilitate and speed up the development of DRL applications.
There is no study that empirically evaluates the effectiveness and performance of implemented algorithms in DRL frameworks.
arXiv Detail & Related papers (2022-08-25T14:52:16Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
Contrastive self-supervised learning has been successfully integrated into the practice of (deep) reinforcement learning (RL)
We study how RL can be empowered by contrastive learning in a class of Markov decision processes (MDPs) and Markov games (MGs) with low-rank transitions.
Under the online setting, we propose novel upper confidence bound (UCB)-type algorithms that incorporate such a contrastive loss with online RL algorithms for MDPs or MGs.
arXiv Detail & Related papers (2022-07-29T17:29:08Z) - Supervised Advantage Actor-Critic for Recommender Systems [76.7066594130961]
We propose negative sampling strategy for training the RL component and combine it with supervised sequential learning.
Based on sampled (negative) actions (items), we can calculate the "advantage" of a positive action over the average case.
We instantiate SNQN and SA2C with four state-of-the-art sequential recommendation models and conduct experiments on two real-world datasets.
arXiv Detail & Related papers (2021-11-05T12:51:15Z) - On the Robustness of Controlled Deep Reinforcement Learning for Slice
Placement [0.8459686722437155]
We compare two Deep Reinforcement Learning algorithms: a pure DRL-based algorithm and a hybrid DRL as a hybrid DRL-heuristic algorithm.
The evaluation results show that the proposed hybrid DRL-heuristic approach is more robust and reliable in case of unpredictable network load changes than pure DRL.
arXiv Detail & Related papers (2021-08-05T10:24:33Z) - Learning on Abstract Domains: A New Approach for Verifiable Guarantee in
Reinforcement Learning [9.428825075908131]
We propose an abstraction-based approach to train DRL systems on finite abstract domains.
It yields neural networks whose input states are finite, making hosting DRL systems directly verifiable.
arXiv Detail & Related papers (2021-06-13T06:28:40Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z) - RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning [108.9599280270704]
We propose a benchmark called RL Unplugged to evaluate and compare offline RL methods.
RL Unplugged includes data from a diverse range of domains including games and simulated motor control problems.
We will release data for all our tasks and open-source all algorithms presented in this paper.
arXiv Detail & Related papers (2020-06-24T17:14:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.