Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
- URL: http://arxiv.org/abs/2403.13740v2
- Date: Fri, 14 Feb 2025 17:30:15 GMT
- Title: Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
- Authors: Jon Vadillo, Roberto Santana, Jose A. Lozano, Marta Kwiatkowska,
- Abstract summary: Prob-PSENNs replace point estimates for prototypes with probability distributions over their values.
Prob-PSENNs provide more meaningful and robust explanations than their non-probabilistic counterparts.
- Score: 17.238290206236027
- License:
- Abstract: The lack of transparency of Deep Neural Networks continues to be a limitation that severely undermines their reliability and usage in high-stakes applications. Promising approaches to overcome such limitations are Prototype-Based Self-Explainable Neural Networks (PSENNs), whose predictions rely on the similarity between the input at hand and a set of prototypical representations of the output classes, offering therefore a deep, yet transparent-by-design, architecture. In this paper, we introduce a probabilistic reformulation of PSENNs, called Prob-PSENN, which replaces point estimates for the prototypes with probability distributions over their values. This provides not only a more flexible framework for an end-to-end learning of prototypes, but can also capture the explanatory uncertainty of the model, which is a missing feature in previous approaches. In addition, since the prototypes determine both the explanation and the prediction, Prob-PSENNs allow us to detect when the model is making uninformed or uncertain predictions, and to obtain valid explanations for them. Our experiments demonstrate that Prob-PSENNs provide more meaningful and robust explanations than their non-probabilistic counterparts, while remaining competitive in terms of predictive performance, thus enhancing the explainability and reliability of the models.
Related papers
- Sparse Prototype Network for Explainable Pedestrian Behavior Prediction [60.80524827122901]
We present Sparse Prototype Network (SPN), an explainable method designed to simultaneously predict a pedestrian's future action, trajectory, and pose.
Regularized by mono-semanticity and clustering constraints, the prototypes learn consistent and human-understandable features.
arXiv Detail & Related papers (2024-10-16T03:33:40Z) - Towards Modeling Uncertainties of Self-explaining Neural Networks via
Conformal Prediction [34.87646720253128]
We propose a novel uncertainty modeling framework for self-explaining neural networks.
We show it provides strong distribution-free uncertainty modeling performance for the generated explanations.
It also excels in producing efficient and effective prediction sets for the final predictions.
arXiv Detail & Related papers (2024-01-03T05:51:49Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
We introduce LaPLACE-explainer, designed to provide probabilistic cause-and-effect explanations for machine learning models.
The LaPLACE-Explainer component leverages the concept of a Markov blanket to establish statistical boundaries between relevant and non-relevant features.
Our approach offers causal explanations and outperforms LIME and SHAP in terms of local accuracy and consistency of explained features.
arXiv Detail & Related papers (2023-10-01T04:09:59Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
We propose to explicitly train the uncertainty predictor where we are not given data to make it reliable.
As one cannot train without data, we provide mechanisms for generating pseudo-inputs in informative low-density regions of the input space.
With a holistic evaluation, we demonstrate that this yields robust and interpretable predictions of uncertainty while retaining state-of-the-art performance on diverse tasks.
arXiv Detail & Related papers (2022-01-15T17:15:07Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
Neural Networks [19.648814035399013]
Explainable AI (XAI) aims to provide interpretations for predictions made by learning machines, such as deep neural networks.
We propose a new framework that allows to convert any arbitrary explanation method for neural networks into an explanation method for Bayesian neural networks.
We demonstrate the effectiveness and usefulness of our approach extensively in various experiments.
arXiv Detail & Related papers (2020-06-16T08:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.