論文の概要: Enhancing Gait Video Analysis in Neurodegenerative Diseases by Knowledge Augmentation in Vision Language Model
- arxiv url: http://arxiv.org/abs/2403.13756v2
- Date: Tue, 15 Oct 2024 13:43:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 13:58:11.186864
- Title: Enhancing Gait Video Analysis in Neurodegenerative Diseases by Knowledge Augmentation in Vision Language Model
- Title(参考訳): 視覚言語モデルにおける知識増強による神経変性疾患の歩行映像解析の強化
- Authors: Diwei Wang, Kun Yuan, Candice Muller, Frédéric Blanc, Nicolas Padoy, Hyewon Seo,
- Abstract要約: 大規模な事前学習型視覚言語モデル(VLM)に基づいて,患者の歩行映像の視覚的,テキスト的,数値的表現を学習し,改善する。
結果から,本モデルはビデオベース分類タスクにおいて最先端の手法よりも優れるだけでなく,学習したクラス固有のテキスト特徴を自然言語記述に包括的にデコードすることがわかった。
- 参考スコア(独自算出の注目度): 10.742625681420279
- License:
- Abstract: We present a knowledge augmentation strategy for assessing the diagnostic groups and gait impairment from monocular gait videos. Based on a large-scale pre-trained Vision Language Model (VLM), our model learns and improves visual, textual, and numerical representations of patient gait videos, through a collective learning across three distinct modalities: gait videos, class-specific descriptions, and numerical gait parameters. Our specific contributions are two-fold: First, we adopt a knowledge-aware prompt tuning strategy to utilize the class-specific medical description in guiding the text prompt learning. Second, we integrate the paired gait parameters in the form of numerical texts to enhance the numeracy of the textual representation. Results demonstrate that our model not only significantly outperforms state-of-the-art methods in video-based classification tasks but also adeptly decodes the learned class-specific text features into natural language descriptions using the vocabulary of quantitative gait parameters. The code and the model will be made available at our project page: https://lisqzqng.github.io/GaitAnalysisVLM/.
- Abstract(参考訳): 単眼歩行ビデオから診断群と歩行障害を評価するための知識増強戦略を提案する。
大規模な事前学習型視覚言語モデル(VLM)に基づいて、歩行ビデオ、クラス固有の記述、数値歩行パラメータの3つの異なるモードの集合的学習を通して、患者の歩行映像の視覚的、テキスト的、数値的表現を学習し、改善する。
まず,テキスト・プロンプト・ラーニングの指導に,クラス固有の医学的記述を活用するために,知識を意識したプロンプト・チューニング戦略を採用する。
第二に、ペア化された歩行パラメータを数値テキストの形で統合し、テキスト表現の数値性を高める。
以上の結果から,ビデオベース分類タスクにおける最先端の手法よりも,学習したクラス固有のテキスト特徴を定量的な歩行パラメータの語彙を用いて自然言語記述に包括的に復号化することが示唆された。
コードとモデルについては、プロジェクトのページで公開します。
関連論文リスト
- Video In-context Learning [46.40277880351059]
本稿では,既存のビデオクリップからモデルが始まり,様々な将来的なシーケンスを生成するビデオインコンテキスト学習について検討する。
これを実現するために、タスクを明確に定義し、ビデオデータセット上で自動回帰変換器を訓練する。
客観的尺度と主観的尺度の両方を含む様々な評価指標を設計し、生成結果の視覚的品質と意味的精度を実証する。
論文 参考訳(メタデータ) (2024-07-10T04:27:06Z) - Videoprompter: an ensemble of foundational models for zero-shot video
understanding [113.92958148574228]
視覚言語モデル(VLM)は、視覚特徴とテキストベースのクラスラベル表現の類似点を計算することで、クエリビデオの分類を行う。
本稿では、事前学習されたディスクリミVLMと、事前学習された生成ビデオ・テキストモデルと、テキスト・テキストモデルを組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-23T19:45:46Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Tellerは、マルチモーダル融合と微粒なモーダルアライメントを利用するビデオ言語基盤モデルである。
Video-Tellerは、凍結した事前訓練されたビジョンと言語モジュールを利用することで、トレーニング効率を高める。
大規模言語モデルの堅牢な言語機能を活用し、簡潔かつ精巧なビデオ記述の生成を可能にする。
論文 参考訳(メタデータ) (2023-10-08T03:35:27Z) - VidLanKD: Improving Language Understanding via Video-Distilled Knowledge
Transfer [76.3906723777229]
言語理解を改善するためのビデオ言語知識蒸留法VidLanKDを提案する。
我々は、ビデオテキストデータセット上でマルチモーダル教師モデルを訓練し、その知識をテキストデータセットを用いて学生言語モデルに伝達する。
我々の実験では、VidLanKDはテキストのみの言語モデルや発声モデルよりも一貫した改善を実現している。
論文 参考訳(メタデータ) (2021-07-06T15:41:32Z) - Video SemNet: Memory-Augmented Video Semantic Network [14.64546899992196]
本稿では,低レベルデータ表現と視覚媒体の意味的側面のギャップを埋めることで,映画の物語要素を捉える機械学習手法を提案する。
本稿では、意味記述子をエンコードし、ビデオの埋め込みを学ぶために、ビデオセマンティックネットワーク(Video SemNet)というメモリ拡張ビデオセマンティックネットワークを提案する。
重み付きF-1スコアは0.72, IMDB評価は0.63である。
論文 参考訳(メタデータ) (2020-11-22T01:36:37Z) - Watch and Learn: Mapping Language and Noisy Real-world Videos with
Self-supervision [54.73758942064708]
我々は、明示的なアノテーションを使わずに、文章と騒々しいビデオスニペットのマッピングを学習することで、視覚と自然言語を理解するように機械に教える。
トレーニングと評価のために、多数のオンラインビデオとサブタイトルを含む新しいデータセットApartmenTourをコントリビュートする。
論文 参考訳(メタデータ) (2020-11-19T03:43:56Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
ビデオキャプションのためのマルチモーダルなニューラルシンボリック表現を学習するための新しいモデルアーキテクチャを提案する。
本手法では,ビデオ間の関係を学習する辞書学習手法と,そのペアによるテキスト記述を用いる。
論文 参考訳(メタデータ) (2020-11-18T20:21:19Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
本稿では,新しいモデルと効果的なトレーニング戦略の両方を含む完全なビデオキャプションシステムを提案する。
具体的には,オブジェクトリレーショナルグラフ(ORG)に基づくエンコーダを提案する。
一方,教師推薦学習(TRL)手法を設計し,成功した外部言語モデル(ELM)をフル活用し,豊富な言語知識をキャプションモデルに統合する。
論文 参考訳(メタデータ) (2020-02-26T15:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。