Certified Human Trajectory Prediction
- URL: http://arxiv.org/abs/2403.13778v2
- Date: Fri, 06 Jun 2025 18:34:56 GMT
- Title: Certified Human Trajectory Prediction
- Authors: Mohammadhossein Bahari, Saeed Saadatnejad, Amirhossein Askari Farsangi, Seyed-Mohsen Moosavi-Dezfooli, Alexandre Alahi,
- Abstract summary: We propose a certification approach tailored for trajectory prediction that provides guaranteed robustness.<n>To mitigate the inherent performance drop through certification, we propose a diffusion-based trajectory denoiser and integrate it into our method.<n>We demonstrate the accuracy and robustness of the certified predictors and highlight their advantages over the non-certified ones.
- Score: 66.1736456453465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting human trajectories is essential for the safe operation of autonomous vehicles, yet current data-driven models often lack robustness in case of noisy inputs such as adversarial examples or imperfect observations. Although some trajectory prediction methods have been developed to provide empirical robustness, these methods are heuristic and do not offer guaranteed robustness. In this work, we propose a certification approach tailored for trajectory prediction that provides guaranteed robustness. To this end, we address the unique challenges associated with trajectory prediction, such as unbounded outputs and multi-modality. To mitigate the inherent performance drop through certification, we propose a diffusion-based trajectory denoiser and integrate it into our method. Moreover, we introduce new certified performance metrics to reliably measure the trajectory prediction performance. Through comprehensive experiments, we demonstrate the accuracy and robustness of the certified predictors and highlight their advantages over the non-certified ones. The code is available online: https://s-attack.github.io/.
Related papers
- Reliable Probabilistic Human Trajectory Prediction for Autonomous Applications [1.8294777056635267]
Vehicle systems need reliable, accurate, fast, resource-efficient, scalable, and low-latency trajectory predictions.
This paper presents a lightweight method to address these requirements, combining Long Short-Term Memory and Mixture Density Networks.
We discuss essential requirements for human trajectory prediction in autonomous vehicle applications and demonstrate our method's performance using traffic-related datasets.
arXiv Detail & Related papers (2024-10-09T14:08:39Z) - Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
arXiv Detail & Related papers (2024-09-16T09:03:28Z) - Towards Certified Probabilistic Robustness with High Accuracy [3.957941698534126]
Adrial examples pose a security threat to many critical systems built on neural networks.
How to build certifiably robust yet accurate neural network models remains an open problem.
We propose a novel approach that aims to achieve both high accuracy and certified probabilistic robustness.
arXiv Detail & Related papers (2023-09-02T09:39:47Z) - Boosting Adversarial Robustness using Feature Level Stochastic Smoothing [46.86097477465267]
adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks.
In this work, we propose a generic method for introducingity in the network predictions.
We also utilize this for smoothing decision rejecting low confidence predictions.
arXiv Detail & Related papers (2023-06-10T15:11:24Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
In deep learning applications such as online content recommendation and stock market analysis, models use historical data to make predictions.
We derive robustness certificates for models that use a fixed-size sliding window over the input stream.
Our guarantees hold for the average model performance across the entire stream and are independent of stream size, making them suitable for large data streams.
arXiv Detail & Related papers (2023-03-28T21:02:35Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Semi-supervised Semantics-guided Adversarial Training for Trajectory
Prediction [15.707419899141698]
Adversarial attacks on trajectory prediction may mislead the prediction of future trajectories and induce unsafe planning.
We present a novel adversarial training method for trajectory prediction.
Our method can effectively mitigate the impact of adversarial attacks by up to 73% and outperform other popular defense methods.
arXiv Detail & Related papers (2022-05-27T20:50:36Z) - TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator
and Predictor [3.6955256596550137]
Trajectory generation and prediction play important roles in planner evaluation and decision making for intelligent vehicles.
We propose a behavior-aware Trajectory Autoencoder (TAE) that explicitly models drivers' behavior.
Our model addresses trajectory generation and prediction in a unified architecture and benefits both tasks.
arXiv Detail & Related papers (2022-03-02T17:37:44Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Learning to Predict Vehicle Trajectories with Model-based Planning [43.27767693429292]
We introduce a novel framework called PRIME, which stands for Prediction with Model-based Planning.
Unlike recent prediction works that utilize neural networks to model scene context, PRIME is designed to generate accurate and feasibility-guaranteed future trajectory predictions.
Our PRIME outperforms state-of-the-art methods in prediction accuracy, feasibility, and robustness under imperfect tracking.
arXiv Detail & Related papers (2021-03-06T04:49:24Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.