Reliable Probabilistic Human Trajectory Prediction for Autonomous Applications
- URL: http://arxiv.org/abs/2410.06905v2
- Date: Thu, 10 Oct 2024 07:25:25 GMT
- Title: Reliable Probabilistic Human Trajectory Prediction for Autonomous Applications
- Authors: Manuel Hetzel, Hannes Reichert, Konrad Doll, Bernhard Sick,
- Abstract summary: Vehicle systems need reliable, accurate, fast, resource-efficient, scalable, and low-latency trajectory predictions.
This paper presents a lightweight method to address these requirements, combining Long Short-Term Memory and Mixture Density Networks.
We discuss essential requirements for human trajectory prediction in autonomous vehicle applications and demonstrate our method's performance using traffic-related datasets.
- Score: 1.8294777056635267
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Autonomous systems, like vehicles or robots, require reliable, accurate, fast, resource-efficient, scalable, and low-latency trajectory predictions to get initial knowledge about future locations and movements of surrounding objects for safe human-machine interaction. Furthermore, they need to know the uncertainty of the predictions for risk assessment to provide safe path planning. This paper presents a lightweight method to address these requirements, combining Long Short-Term Memory and Mixture Density Networks. Our method predicts probability distributions, including confidence level estimations for positional uncertainty to support subsequent risk management applications and runs on a low-power embedded platform. We discuss essential requirements for human trajectory prediction in autonomous vehicle applications and demonstrate our method's performance using multiple traffic-related datasets. Furthermore, we explain reliability and sharpness metrics and show how important they are to guarantee the correctness and robustness of a model's predictions and uncertainty assessments. These essential evaluations have so far received little attention for no good reason. Our approach focuses entirely on real-world applicability. Verifying prediction uncertainties and a model's reliability are central to autonomous real-world applications. Our framework and code are available at: https://github.com/kav-institute/mdn_trajectory_forecasting.
Related papers
- Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - KI-PMF: Knowledge Integrated Plausible Motion Forecasting [11.311561045938546]
Current trajectory forecasting approaches primarily concentrate on optimizing a loss function with a specific metric.
Our objective is to incorporate explicit knowledge priors that allow a network to forecast future trajectories in compliance with both the kinematic constraints of a vehicle.
Our proposed method is designed to ensure reachability guarantees for traffic actors in both complex and dynamic situations.
arXiv Detail & Related papers (2023-10-18T14:40:52Z) - Self-Aware Trajectory Prediction for Safe Autonomous Driving [9.868681330733764]
Trajectory prediction is one of the key components of the autonomous driving software stack.
In this paper, a self-aware trajectory prediction method is proposed.
The proposed method performed well in terms of self-awareness, memory footprint, and real-time performance.
arXiv Detail & Related papers (2023-05-16T03:53:23Z) - Uncertainty Estimation based on Geometric Separation [13.588210692213568]
In machine learning, accurately predicting the probability that a specific input is correct is crucial for risk management.
We put forward a novel geometric-based approach for improving uncertainty estimations in machine learning models.
arXiv Detail & Related papers (2023-01-11T13:19:24Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
We aim to estimate a dense flow field relating two images, coupled with a robust pixel-wise confidence map.
We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty.
Our approach obtains state-of-the-art results on challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-01-05T18:54:11Z) - CARPAL: Confidence-Aware Intent Recognition for Parallel Autonomy [24.358828325716427]
We propose a novel multi-task intent recognition neural network that predicts not only probabilistic driver trajectories, but also utility statistics associated with the predictions for a given downstream task.
We test our online system on a realistic urban driving dataset, and demonstrate its advantage in terms of recall and fall-out metrics compared to baseline methods.
arXiv Detail & Related papers (2020-03-18T01:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.