Probing Hilbert Space Fragmentation with Strongly Interacting Rydberg Atoms
- URL: http://arxiv.org/abs/2403.13790v1
- Date: Wed, 20 Mar 2024 17:53:20 GMT
- Title: Probing Hilbert Space Fragmentation with Strongly Interacting Rydberg Atoms
- Authors: Fan Yang, Hadi Yarloo, Hua-Chen Zhang, Klaus Mølmer, Anne E. B. Nielsen,
- Abstract summary: Hilbert space fragmentation provides a mechanism to break ergodicity in closed many-body systems.
We show that the Rydberg Ising model in the large detuning regime can be mapped to a generalized folded XXZ model.
We also examine the role of atomic position disorders and identify a symmetry-selective many-body localization transition.
- Score: 2.321156230142032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hilbert space fragmentation provides a mechanism to break ergodicity in closed many-body systems. Here, we propose a realistic scheme to comprehensively explore this exotic paradigm on a Rydberg quantum simulator. We show that the Rydberg Ising model in the large detuning regime can be mapped to a generalized folded XXZ model featuring a strongly fragmented Hilbert space. The emergent Hamiltonian, however, displays distinct time scales for the transport of a magnon and a hole excitation. This interesting property facilitates a continuous tuning of the Krylov-subspace ergodicity, from the integrable regime, to the Krylov-restricted thermal phase, and eventually to the statistical bubble localization region. By further introducing nonlocal interactions, we find that both the fragmentation behavior and the ergodicity of the Krylov subspace can be significantly enriched. We also examine the role of atomic position disorders and identify a symmetry-selective many-body localization transition. We demonstrate that these phenomena manifest themselves in quench dynamics, which can be readily probed in state-of-the-art Rydberg array setups.
Related papers
- Quantum Fragmentation in the Extended Quantum Breakdown Model [0.0]
We analytically show that, in the absence of any magnetic field for the spins, the model exhibits Hilbert space fragmentation into exponentially many Krylov subspaces.
We also study the long-time behavior of the entanglement entropy and its deviation from the expected Page value as a probe of ergodicity in the system.
arXiv Detail & Related papers (2024-01-29T19:00:10Z) - Quantum Monte Carlo simulations in the restricted Hilbert space of Rydberg atom arrays [0.0]
Rydberg atom arrays have emerged as a powerful platform to simulate a number of exotic quantum ground states and phase transitions.
We develop a versatile quantum Monte Carlo sampling technique which operates in the reduced Hilbert space generated by enforcing the constraint of a Rydberg blockade.
We show that it can efficiently generate the phase diagram of a Rydberg atom array, to temperatures much smaller than all energy scales involved, on a Kagom'e link lattice.
arXiv Detail & Related papers (2023-09-01T14:18:54Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Quantum spin liquids bootstrapped from Ising criticality in Rydberg
arrays [10.616940219574778]
We develop a new strategy for accessing a family of fractionalized phases known as quantum spin liquids in Rydberg arrays.
We specifically use effective field theory methods to study arrays assembled from Rydberg chains tuned to an Ising phase transition.
Our work suggests that appropriately tuned Rydberg arrays provide a cold-atoms counterpart of solid-state 'Kitaev materials'
arXiv Detail & Related papers (2022-03-31T18:00:00Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Emergent symmetries and slow quantum dynamics in a Rydberg-atom chain
with confinement [0.0]
Rydberg atoms in optical tweezer arrays provide a playground for nonequilibrium quantum many-body physics.
The PXP model describes the dynamics of such systems in the strongly interacting Rydberg blockade regime.
We show that the interplay between these emergent symmetries and the Rydberg blockade constraint dramatically slows down the system's dynamics beyond naive expectations.
arXiv Detail & Related papers (2021-03-17T17:01:37Z) - Frustration-induced emergent Hilbert space fragmentation [0.9453554184019105]
Lattice geometry and quantum mechanics can conspire to produce constrained quantum dynamics and associated glassy behavior.
We study their level statistics and relaxation dynamics to develop a coherent picture of fragmentation in various limits of the XXZ model on the kagome lattice.
arXiv Detail & Related papers (2020-11-03T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.