Emergent symmetries and slow quantum dynamics in a Rydberg-atom chain
with confinement
- URL: http://arxiv.org/abs/2103.09773v1
- Date: Wed, 17 Mar 2021 17:01:37 GMT
- Title: Emergent symmetries and slow quantum dynamics in a Rydberg-atom chain
with confinement
- Authors: I-Chi Chen and Thomas Iadecola
- Abstract summary: Rydberg atoms in optical tweezer arrays provide a playground for nonequilibrium quantum many-body physics.
The PXP model describes the dynamics of such systems in the strongly interacting Rydberg blockade regime.
We show that the interplay between these emergent symmetries and the Rydberg blockade constraint dramatically slows down the system's dynamics beyond naive expectations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rydberg atoms in optical tweezer arrays provide a playground for
nonequilibrium quantum many-body physics. The PXP model describes the dynamics
of such systems in the strongly interacting Rydberg blockade regime and notably
exhibits weakly nonergodic dynamics due to quantum many-body scars. Here, we
study the PXP model in a strong staggered external field, which has been
proposed to manifest quasiparticle confinement in light of a mapping to a
lattice gauge theory. We characterize this confining regime using both
numerical exact diagonalization and perturbation theory around the strong-field
limit. In addition to the expected emergent symmetry generated by the staggered
field, we find a second emergent symmetry that is special to the PXP model. The
interplay between these emergent symmetries and the Rydberg blockade constraint
dramatically slows down the system's dynamics beyond naive expectations. We
devise a nested Schrieffer-Wolff perturbation theory to properly account for
the new emergent symmetry and show that this treatment is essential to
understand the numerically observed relaxation time scales. We also discuss
connections to Hilbert space fragmentation and trace the origin of the new
emergent symmetry to a "nearly-$SU(2)$" algebra discovered in the context of
many-body scarring.
Related papers
- Scar-induced imbalance in staggered Rydberg ladders [0.0]
We show that the kinematically-constrained model of Rydberg atoms on a two-leg ladder with staggered detuning has quantum many-body scars (QMBS) in its spectrum.
QMBS result in coherent many-body revivals and site-dependent magnetization dynamics for both N'eel and Rydberg vacuum initial states around $Delta=1$.
arXiv Detail & Related papers (2024-11-04T19:00:02Z) - A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Probing Hilbert Space Fragmentation with Strongly Interacting Rydberg Atoms [2.321156230142032]
Hilbert space fragmentation provides a mechanism to break ergodicity in closed many-body systems.
We show that the Rydberg Ising model in the large detuning regime can be mapped to a generalized folded XXZ model.
We also examine the role of atomic position disorders and identify a symmetry-selective many-body localization transition.
arXiv Detail & Related papers (2024-03-20T17:53:20Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Entanglement dynamics in the many-body Hatano-Nelson model [0.0]
The entanglement dynamics in a non-Hermitian quantum system is studied numerically and analyzed from the viewpoint of quasiparticle picture.
As opposed to an assertion of previous studies, the entanglement dynamics in this non-Hermitian quantum system is very different from the one in its Hermitian counterpart.
arXiv Detail & Related papers (2023-08-06T10:12:41Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Diffusive-to-ballistic crossover of symmetry violation in open many-body
systems [0.0]
We study the dynamics of textitsymmetry violation in quantum many-body systems with slight coherent (at strength $lambda$) or incoherent breaking of their local and global symmetries.
We show that symmetry breaking generically leads to a crossover in the divergence growth from diffusive behavior at onset times to ballistic or hyperballistic scaling at intermediate times, before diffusion dominates at long times.
arXiv Detail & Related papers (2020-09-30T18:00:00Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.