Editing Massive Concepts in Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2403.13807v1
- Date: Wed, 20 Mar 2024 17:59:57 GMT
- Title: Editing Massive Concepts in Text-to-Image Diffusion Models
- Authors: Tianwei Xiong, Yue Wu, Enze Xie, Yue Wu, Zhenguo Li, Xihui Liu,
- Abstract summary: We propose a two-stage method, Editing Massive Concepts In Diffusion Models (EMCID)
The first stage performs memory optimization for each individual concept with dual self-distillation from text alignment loss and diffusion noise prediction loss.
The second stage conducts massive concept editing with multi-layer, closed form model editing.
- Score: 58.620118104364174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image diffusion models suffer from the risk of generating outdated, copyrighted, incorrect, and biased content. While previous methods have mitigated the issues on a small scale, it is essential to handle them simultaneously in larger-scale real-world scenarios. We propose a two-stage method, Editing Massive Concepts In Diffusion Models (EMCID). The first stage performs memory optimization for each individual concept with dual self-distillation from text alignment loss and diffusion noise prediction loss. The second stage conducts massive concept editing with multi-layer, closed form model editing. We further propose a comprehensive benchmark, named ImageNet Concept Editing Benchmark (ICEB), for evaluating massive concept editing for T2I models with two subtasks, free-form prompts, massive concept categories, and extensive evaluation metrics. Extensive experiments conducted on our proposed benchmark and previous benchmarks demonstrate the superior scalability of EMCID for editing up to 1,000 concepts, providing a practical approach for fast adjustment and re-deployment of T2I diffusion models in real-world applications.
Related papers
- DreamSteerer: Enhancing Source Image Conditioned Editability using Personalized Diffusion Models [7.418186319496487]
Recent text-to-image personalization methods have shown great promise in teaching a diffusion model user-specified concepts.
A promising extension is personalized editing, namely to edit an image using personalized concepts.
We propose DreamSteerer, a plug-in method for augmenting existing T2I personalization methods.
arXiv Detail & Related papers (2024-10-15T02:50:54Z) - Training-Free Large Model Priors for Multiple-in-One Image Restoration [24.230376300759573]
Large Model Driven Image Restoration framework (LMDIR)
Our architecture comprises a query-based prompt encoder, degradation-aware transformer block injecting global degradation knowledge.
This design facilitates single-stage training paradigm to address various degradations while supporting both automatic and user-guided restoration.
arXiv Detail & Related papers (2024-07-18T05:40:32Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts.
The models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts.
concept removal methods have been proposed to modify diffusion models to prevent the generation of malicious and unwanted concepts.
arXiv Detail & Related papers (2024-06-21T03:58:44Z) - Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient [20.091446060893638]
This paper proposes a concept domain correction framework for unlearning concepts in diffusion models.
By aligning the output domains of sensitive concepts and anchor concepts through adversarial training, we enhance the generalizability of the unlearning results.
arXiv Detail & Related papers (2024-05-24T07:47:36Z) - Direct Consistency Optimization for Compositional Text-to-Image
Personalization [73.94505688626651]
Text-to-image (T2I) diffusion models, when fine-tuned on a few personal images, are able to generate visuals with a high degree of consistency.
We propose to fine-tune the T2I model by maximizing consistency to reference images, while penalizing the deviation from the pretrained model.
arXiv Detail & Related papers (2024-02-19T09:52:41Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Unified Concept Editing in Diffusion Models [53.30378722979958]
We present a method that tackles all issues with a single approach.
Our method, Unified Concept Editing (UCE), edits the model without training using a closed-form solution.
We demonstrate scalable simultaneous debiasing, style erasure, and content moderation by editing text-to-image projections.
arXiv Detail & Related papers (2023-08-25T17:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.