EraseAnything: Enabling Concept Erasure in Rectified Flow Transformers
- URL: http://arxiv.org/abs/2412.20413v2
- Date: Thu, 02 Jan 2025 13:26:55 GMT
- Title: EraseAnything: Enabling Concept Erasure in Rectified Flow Transformers
- Authors: Daiheng Gao, Shilin Lu, Shaw Walters, Wenbo Zhou, Jiaming Chu, Jie Zhang, Bang Zhang, Mengxi Jia, Jian Zhao, Zhaoxin Fan, Weiming Zhang,
- Abstract summary: EraseAnything is the first method specifically developed to address concept erasure within the latest flow-based T2I framework.
We formulate concept erasure as a bi-level optimization problem, employing LoRA-based parameter tuning and an attention map regularizer.
We propose a self-contrastive learning strategy to ensure that removing unwanted concepts does not inadvertently harm performance on unrelated ones.
- Score: 33.195628798316754
- License:
- Abstract: Removing unwanted concepts from large-scale text-to-image (T2I) diffusion models while maintaining their overall generative quality remains an open challenge. This difficulty is especially pronounced in emerging paradigms, such as Stable Diffusion (SD) v3 and Flux, which incorporate flow matching and transformer-based architectures. These advancements limit the transferability of existing concept-erasure techniques that were originally designed for the previous T2I paradigm (e.g., SD v1.4). In this work, we introduce EraseAnything, the first method specifically developed to address concept erasure within the latest flow-based T2I framework. We formulate concept erasure as a bi-level optimization problem, employing LoRA-based parameter tuning and an attention map regularizer to selectively suppress undesirable activations. Furthermore, we propose a self-contrastive learning strategy to ensure that removing unwanted concepts does not inadvertently harm performance on unrelated ones. Experimental results demonstrate that EraseAnything successfully fills the research gap left by earlier methods in this new T2I paradigm, achieving state-of-the-art performance across a wide range of concept erasure tasks.
Related papers
- DuMo: Dual Encoder Modulation Network for Precise Concept Erasure [75.05165577219425]
We propose our Dual encoder Modulation network (DuMo) which achieves precise erasure of inappropriate target concepts with minimum impairment to non-target concepts.
Our method achieves state-of-the-art performance on Explicit Content Erasure, Cartoon Concept Removal and Artistic Style Erasure, clearly outperforming alternative methods.
arXiv Detail & Related papers (2025-01-02T07:47:34Z) - Efficient Fine-Tuning and Concept Suppression for Pruned Diffusion Models [93.76814568163353]
We propose a novel bilevel optimization framework for pruned diffusion models.
This framework consolidates the fine-tuning and unlearning processes into a unified phase.
It is compatible with various pruning and concept unlearning methods.
arXiv Detail & Related papers (2024-12-19T19:13:18Z) - Precise, Fast, and Low-cost Concept Erasure in Value Space: Orthogonal Complement Matters [38.355389084255386]
We propose a precise, fast, and low-cost concept erasure method, called Adaptive Vaule Decomposer (AdaVD)
AdaVD supports a series of diffusion models and downstream image generation tasks, the code is available on the project page.
arXiv Detail & Related papers (2024-12-09T01:56:25Z) - STEREO: Towards Adversarially Robust Concept Erasing from Text-to-Image Generation Models [18.64776777593743]
We propose an approach called STEREO that involves two distinct stages.
The first stage searches thoroughly enough for strong and diverse adversarial prompts that can regenerate an erased concept from a CEM.
In the second robustly erase once stage, we introduce an anchor-concept-based compositional objective to robustly erase the target concept at one go.
arXiv Detail & Related papers (2024-08-29T17:29:26Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
We introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning.
To mitigate inappropriate content potentially represented by derived embeddings, RECE aligns them with harmless concepts in cross-attention layers.
The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts.
arXiv Detail & Related papers (2024-07-17T08:04:28Z) - Editing Massive Concepts in Text-to-Image Diffusion Models [58.620118104364174]
We propose a two-stage method, Editing Massive Concepts In Diffusion Models (EMCID)
The first stage performs memory optimization for each individual concept with dual self-distillation from text alignment loss and diffusion noise prediction loss.
The second stage conducts massive concept editing with multi-layer, closed form model editing.
arXiv Detail & Related papers (2024-03-20T17:59:57Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z) - All but One: Surgical Concept Erasing with Model Preservation in
Text-to-Image Diffusion Models [22.60023885544265]
Large-scale datasets may contain sexually explicit, copyrighted, or undesirable content, which allows the model to directly generate them.
Fine-tuning algorithms have been developed to tackle concept erasing in diffusion models.
We present a new approach that solves all of these challenges.
arXiv Detail & Related papers (2023-12-20T07:04:33Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bell is a model-agnostic red-teaming tool for T2I diffusion models.
It identifies problematic prompts for diffusion models with the corresponding generation of inappropriate content.
Our results show that Ring-A-Bell, by manipulating safe prompting benchmarks, can transform prompts that were originally regarded as safe to evade existing safety mechanisms.
arXiv Detail & Related papers (2023-10-16T02:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.