論文の概要: An Effective Learning Management System for Revealing Student Performance Attributes
- arxiv url: http://arxiv.org/abs/2403.13822v1
- Date: Tue, 5 Mar 2024 03:56:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:07:37.454839
- Title: An Effective Learning Management System for Revealing Student Performance Attributes
- Title(参考訳): 学生のパフォーマンス属性を学習するための効果的な学習管理システム
- Authors: Xinyu Zhang, Vincent CS Lee, Duo Xu, Jun Chen, Mohammad S. Obaidat,
- Abstract要約: 本研究では,学生の成績記録から効率的にマイニングするために,先進的な教育用マイニングモジュールを組み込んだLMSを提案する。
その結果,従来の教育用マイニングアルゴリズムと比較して,情報損失のないマイニングモジュールのマイニング効率が向上した。
このような効果的なLMSの設計と応用により、教育者は過去の学生のパフォーマンス経験から学び、時間内に生徒と交流し、最終的に学業成功を向上させることができる。
- 参考スコア(独自算出の注目度): 22.88480788156872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A learning management system streamlines the management of the teaching process in a centralized place, recording, tracking, and reporting the delivery of educational courses and student performance. Educational knowledge discovery from such an e-learning system plays a crucial role in rule regulation, policy establishment, and system development. However, existing LMSs do not have embedded mining modules to directly extract knowledge. As educational modes become more complex, educational data mining efficiency from those heterogeneous student learning behaviours is gradually degraded. Therefore, an LMS incorporated with an advanced educational mining module is proposed in this study, as a means to mine efficiently from student performance records to provide valuable insights for educators in helping plan effective learning pedagogies, improve curriculum design, and guarantee quality of teaching. Through two illustrative case studies, experimental results demonstrate increased mining efficiency of the proposed mining module without information loss compared to classic educational mining algorithms. The mined knowledge reveals a set of attributes that significantly impact student academic performance, and further classification evaluation validates the identified attributes. The design and application of such an effective LMS can enable educators to learn from past student performance experiences, empowering them to guide and intervene with students in time, and eventually improve their academic success.
- Abstract(参考訳): 学習管理システムは、集中的な場所での教育プロセスの管理を効率化し、教育コースの納期と学生のパフォーマンスを記録し、追跡し、報告する。
このようなeラーニングシステムからの教育的知識発見は,ルール規制,政策確立,システム開発において重要な役割を担っている。
しかし、既存のLMSは、知識を直接抽出するための組み込みのマイニングモジュールを持っていない。
教育モードが複雑化するにつれて、これらの異質な学習行動からの教育データマイニング効率は徐々に低下していく。
そこで本研究では, 先進的な教育用マイニングモジュールを組み込んだLMSを提案し, 学生成績記録から効率的なマイニングを行い, 効果的な学習教育計画の立案, カリキュラム設計の改善, 教育の質の確保に役立てる上で, 教育者にとって貴重な知見を提供する。
2つの実証的なケーススタディを通じて、実験結果により、従来の教育的なマイニングアルゴリズムと比較して情報損失のないマイニングモジュールのマイニング効率が向上した。
マイニングされた知識は、学生の学業成績に大きな影響を及ぼす属性の集合を明らかにし、さらに分類評価により、同定された属性を評価する。
このような効果的なLMSの設計と応用により、教育者は過去の学生のパフォーマンス経験から学び、時間内に生徒と交流し、最終的に学業成功を向上させることができる。
関連論文リスト
- Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Process mining for self-regulated learning assessment in e-learning [0.0]
我々は,プロセスマイニング技術を用いて,自己統制学習などの中核的スキルの習得について検討する。
我々は,Moodle 2.0プラットフォーム上で1学期以上のコースで101人の大学生のインタラクショントレースに対して,インダクティブマイナーという教育領域に新しいアルゴリズムを適用した。
受講生は, 受講生の示唆に忠実に従わなかったが, 失敗するクラスメートとは対照的に, 自己統制的な学習プロセスの論理に従わなかった。
論文 参考訳(メタデータ) (2024-02-11T11:51:32Z) - Knowledge Distillation for Road Detection based on cross-model Semi-Supervised Learning [17.690698736544626]
本稿では,知識蒸留と半教師付き学習手法を組み合わせた統合的アプローチを提案する。
このハイブリッドアプローチは、大規模モデルのロバストな機能を活用して、大規模な未ラベルデータを効果的に活用する。
半教師付き学習に基づく知識蒸留(SSLKD)アプローチは,学生モデルの性能向上を示す。
論文 参考訳(メタデータ) (2024-02-07T22:50:47Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示すだけでなく、知性の火花も示している。
近年の研究では、人間の試験における能力の評価に焦点が当てられ、異なる領域における彼らの印象的な能力を明らかにしている。
ブルーム分類に基づく人体検査データセットであるMoocRadarを用いて評価を行った。
論文 参考訳(メタデータ) (2023-10-12T09:55:45Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - A Machine Learning system to monitor student progress in educational
institutes [0.0]
本稿では、機械学習技術を用いて、クレジットスコアと呼ばれる分類器を生成するデータ駆動手法を提案する。
信用スコアを進捗指標として使うという提案は、学習管理システムで使うのに適している。
論文 参考訳(メタデータ) (2022-11-02T08:24:08Z) - Learning Data Teaching Strategies Via Knowledge Tracing [5.648636668261282]
本稿では,学生モデルのためのデータ教育戦略を最適化する,知識強化データ教育(KADT)と呼ばれる新しい手法を提案する。
KADT法は、潜在学習概念の観点から、学生モデルの知識進捗を動的に捉えるための知識追跡モデルを含む。
我々は、知識追跡、感情分析、映画レコメンデーション、画像分類を含む4つの機械学習タスクにおいて、KADT法の性能を評価した。
論文 参考訳(メタデータ) (2021-11-13T10:10:48Z) - Application of Deep Self-Attention in Knowledge Tracing [2.5852720579998336]
本稿では,中国の多くの大学の学生が使用しているオンラインアセスメントシステムであるPTAのデータをもとに,Deep Self-Attentive Knowledge Tracing (DSAKT)を提案する。
PTAのデータの実験では、DSAKTは知識追跡において他のモデルよりも2.1%向上している。
論文 参考訳(メタデータ) (2021-05-17T14:45:38Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
本稿では,表情認識における認識精度を向上させるために,PASM(Point Adversarial Self Mining)を提案する。
PASMは、目標タスクに関連する最も情報性の高い位置を見つけるために、ポイント敵攻撃法と訓練された教師ネットワークを使用する。
適応学習教材の生成と教師/学生の更新を複数回行うことができ、ネットワーク能力が反復的に向上する。
論文 参考訳(メタデータ) (2020-08-26T06:39:24Z) - Interactive Knowledge Distillation [79.12866404907506]
本稿では,効率的な知識蒸留のための対話型指導戦略を活用するために,対話型知識蒸留方式を提案する。
蒸留工程では,教師と学生のネットワーク間の相互作用を交換操作により行う。
教員ネットワークの典型的な設定による実験により,IAKDで訓練された学生ネットワークは,従来の知識蒸留法で訓練された学生ネットワークよりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-07-03T03:22:04Z) - Dual Policy Distillation [58.43610940026261]
教員政策を学生政策に転換する政策蒸留は、深層強化学習の課題において大きな成功を収めた。
本研究では,2人の学習者が同じ環境下で活動し,環境の異なる視点を探索する,学生学生による二重政策蒸留(DPD)を導入する。
この二重学習フレームワークを開発する上で重要な課題は、同時代の学習に基づく強化学習アルゴリズムにおいて、ピア学習者から有益な知識を特定することである。
論文 参考訳(メタデータ) (2020-06-07T06:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。