Few-shot Learning on Heterogeneous Graphs: Challenges, Progress, and Prospects
- URL: http://arxiv.org/abs/2403.13834v1
- Date: Sun, 10 Mar 2024 00:43:36 GMT
- Title: Few-shot Learning on Heterogeneous Graphs: Challenges, Progress, and Prospects
- Authors: Pengfei Ding, Yan Wang, Guanfeng Liu,
- Abstract summary: Few-shot learning on heterogeneous graphs (FLHG) is attracting more attention from both academia and industry.
FLHG aims to tackle the performance degradation in the face of limited annotated data.
This paper provides a comprehensive review of existing FLHG methods, covering challenges, research progress, and future prospects.
- Score: 7.682496639660342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning on heterogeneous graphs (FLHG) is attracting more attention from both academia and industry because prevailing studies on heterogeneous graphs often suffer from label sparsity. FLHG aims to tackle the performance degradation in the face of limited annotated data and there have been numerous recent studies proposing various methods and applications. In this paper, we provide a comprehensive review of existing FLHG methods, covering challenges, research progress, and future prospects. Specifically, we first formalize FLHG and categorize its methods into three types: single-heterogeneity FLHG, dual-heterogeneity FLHG, and multi-heterogeneity FLHG. Then, we analyze the research progress within each category, highlighting the most recent and representative developments. Finally, we identify and discuss promising directions for future research in FLHG. To the best of our knowledge, this paper is the first systematic and comprehensive review of FLHG.
Related papers
- Deep Graph Anomaly Detection: A Survey and New Perspectives [86.84201183954016]
Graph anomaly detection (GAD) aims to identify unusual graph instances (nodes, edges, subgraphs, or graphs)
Deep learning approaches, graph neural networks (GNNs) in particular, have been emerging as a promising paradigm for GAD.
arXiv Detail & Related papers (2024-09-16T03:05:11Z) - The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Few-Shot Learning on Graphs: from Meta-learning to Pre-training and
Prompting [56.25730255038747]
This survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions.
We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches.
We analyze the relationships among these methods and compare their strengths and limitations.
arXiv Detail & Related papers (2024-02-02T14:32:42Z) - Few-Shot Causal Representation Learning for Out-of-Distribution Generalization on Heterogeneous Graphs [16.130356170284127]
Heterogeneous graph few-shot learning (HGFL) has been developed to address the label sparsity issue in heterogeneous graphs (HGs)
We propose a novel Causal OOD Heterogeneous graph Few-shot learning model, namely COHF.
arXiv Detail & Related papers (2024-01-07T22:47:38Z) - Cross-heterogeneity Graph Few-shot Learning [9.80898395055038]
We propose a novel model for Cross-heterogeneity Graph Few-shot Learning, namely CGFL.
In CGFL, we first extract meta-patterns to capture heterogeneous information.
Then, we propose a score module to measure the informativeness of labeled samples and determine the transferability of each source HG.
arXiv Detail & Related papers (2023-08-10T01:25:28Z) - Heterogeneous Federated Learning: State-of-the-art and Research
Challenges [117.77132819796105]
Heterogeneous Federated Learning (HFL) is much more challenging and corresponding solutions are diverse and complex.
New advances in HFL are reviewed and a new taxonomy of existing HFL methods is proposed.
Several critical and promising future research directions in HFL are discussed.
arXiv Detail & Related papers (2023-07-20T06:32:14Z) - Few-Shot Learning on Graphs: A Survey [92.47605211946149]
Graph representation learning has attracted tremendous attention due to its remarkable performance in many real-world applications.
semi-supervised graph representation learning models for specific tasks often suffer from label sparsity issue.
Few-shot learning on graphs (FSLG) has been proposed to tackle the performance degradation in face of limited annotated data challenge.
arXiv Detail & Related papers (2022-03-17T13:21:11Z) - A Survey on Heterogeneous Graph Embedding: Methods, Techniques,
Applications and Sources [79.48829365560788]
Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios.
HG embedding aims to learn representations in a lower-dimension space while preserving the heterogeneous structures and semantics for downstream tasks.
arXiv Detail & Related papers (2020-11-30T15:03:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.