論文の概要: Tree-based Learning for High-Fidelity Prediction of Chaos
- arxiv url: http://arxiv.org/abs/2403.13836v1
- Date: Tue, 12 Mar 2024 01:16:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:07:37.430424
- Title: Tree-based Learning for High-Fidelity Prediction of Chaos
- Title(参考訳): カオスの高忠実度予測のための木に基づく学習
- Authors: Adam Giammarese, Kamal Rana, Erik M. Bollt, Nishant Malik,
- Abstract要約: TreeDOXは、カオスシステムのモデルフリー予測に対するツリーベースのアプローチである。
時間遅延オーバー埋め込みを明示的な短期記憶として使用し、Extra-Trees Regressorsを使用して機能の削減と予測を行う。
我々はHenon map, Lorenz and Kuramoto-Sivashinsky system, and the real-world Southern Oscillation Indexを用いてTreeDOXの最先端性能を示す。
- 参考スコア(独自算出の注目度): 0.2999888908665658
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Model-free forecasting of the temporal evolution of chaotic systems is crucial but challenging. Existing solutions require hyperparameter tuning, significantly hindering their wider adoption. In this work, we introduce a tree-based approach not requiring hyperparameter tuning: TreeDOX. It uses time delay overembedding as explicit short-term memory and Extra-Trees Regressors to perform feature reduction and forecasting. We demonstrate the state-of-the-art performance of TreeDOX using the Henon map, Lorenz and Kuramoto-Sivashinsky systems, and the real-world Southern Oscillation Index.
- Abstract(参考訳): カオスシステムの時間的進化をモデル無しで予測することは重要であるが困難である。
既存のソリューションではハイパーパラメータチューニングが必要であり、採用を著しく妨げている。
本稿では,ハイパーパラメータチューニングを必要としないツリーベースのアプローチを提案する。
時間遅延オーバー埋め込みを明示的な短期記憶として使用し、Extra-Trees Regressorsを使用して機能の削減と予測を行う。
我々はHenon map, Lorenz and Kuramoto-Sivashinsky system, and the real-world Southern Oscillation Indexを用いてTreeDOXの最先端性能を示す。
関連論文リスト
- Oscillatory State-Space Models [61.923849241099184]
長いシーケンスを効率的に学習するための線形状態空間モデル(LinOSS)を提案する。
高速な連想並列スキャンを用いて時間とともに統合された安定な離散化により、提案した状態空間モデルが得られる。
我々はLinOSSが普遍であること、すなわち時間変化関数間の連続および因果作用素写像を近似できることを示す。
論文 参考訳(メタデータ) (2024-10-04T22:00:13Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Treesは時系列モデルのパラメータを学習するために設計されている。
対象とする時系列モデルのパラメータを特徴に関連付けることで、Hyper-Treesはパラメータ非定常性の問題にも対処する。
この新しいアプローチでは、木はまず入力特徴から情報表現を生成し、浅いネットワークはターゲットモデルパラメータにマップする。
論文 参考訳(メタデータ) (2024-05-13T15:22:15Z) - ARTree: A Deep Autoregressive Model for Phylogenetic Inference [6.935130578959931]
グラフニューラルネットワーク(GNN)に基づく系統推定のための深層自己回帰モデルを提案する。
本研究では,本手法の有効性と効率を,実データツリーのトポロジー密度推定と変分系統推定問題のベンチマークで実証する。
論文 参考訳(メタデータ) (2023-10-14T10:26:03Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - SETAR-Tree: A Novel and Accurate Tree Algorithm for Global Time Series
Forecasting [7.206754802573034]
本稿では,TARモデルと回帰木との密接な関係について検討する。
本研究では,葉のグローバルプール回帰(PR)モデルをトレーニングする,予測固有木アルゴリズムを提案する。
本評価では, 提案した樹木モデルと森林モデルを用いて, 最先端の樹木モデルよりも精度の高い木モデルを提案する。
論文 参考訳(メタデータ) (2022-11-16T04:30:42Z) - TreeDRNet:A Robust Deep Model for Long Term Time Series Forecasting [24.832101846728925]
我々は、より効果的な長期予測のために、TreeDRNetと呼ばれる新しいニューラルネットワークアーキテクチャを提案する。
頑健な回帰にインスパイアされた2つの残差リンク構造を導入し、予測をより堅牢にする。
我々の実証研究は、TreeDRNetが最先端の手法よりもはるかに効果的であることを示している。
論文 参考訳(メタデータ) (2022-06-24T06:53:11Z) - Social Interpretable Tree for Pedestrian Trajectory Prediction [75.81745697967608]
本稿では,このマルチモーダル予測課題に対処するため,SIT(Social Interpretable Tree)と呼ばれる木に基づく手法を提案する。
木の根から葉までの経路は、個々の将来の軌跡を表す。
ETH-UCYとStanford Droneのデータセットによる実験結果からは,手作り木にもかかわらず,我々の手法が最先端の手法の性能に適合または超えることを示した。
論文 参考訳(メタデータ) (2022-05-26T12:18:44Z) - Lassoed Tree Boosting [53.56229983630983]
有界断面変動のカドラー関数の大きな非パラメトリック空間において,早期に停止するn-1/4$ L2の収束速度を持つ勾配向上木アルゴリズムを証明した。
我々の収束証明は、ネストしたドンスカー類の経験的損失最小化子による早期停止に関する新しい一般定理に基づいている。
論文 参考訳(メタデータ) (2022-05-22T00:34:41Z) - Hierarchical Shrinkage: improving the accuracy and interpretability of
tree-based methods [10.289846887751079]
木構造を改変しないポストホックアルゴリズムである階層収縮(Hierarchical Shrinkage, HS)を導入する。
HSは、他の正規化技術と併用しても、決定木の予測性能を大幅に向上させる。
すべてのコードとモデルはGithubにある本格的なパッケージでリリースされている。
論文 参考訳(メタデータ) (2022-02-02T02:43:23Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。