Whose Side Are You On? Investigating the Political Stance of Large Language Models
- URL: http://arxiv.org/abs/2403.13840v1
- Date: Fri, 15 Mar 2024 04:02:24 GMT
- Title: Whose Side Are You On? Investigating the Political Stance of Large Language Models
- Authors: Pagnarasmey Pit, Xingjun Ma, Mike Conway, Qingyu Chen, James Bailey, Henry Pit, Putrasmey Keo, Watey Diep, Yu-Gang Jiang,
- Abstract summary: We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
- Score: 56.883423489203786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have gained significant popularity for their application in various everyday tasks such as text generation, summarization, and information retrieval. As the widespread adoption of LLMs continues to surge, it becomes increasingly crucial to ensure that these models yield responses that are politically impartial, with the aim of preventing information bubbles, upholding fairness in representation, and mitigating confirmation bias. In this paper, we propose a quantitative framework and pipeline designed to systematically investigate the political orientation of LLMs. Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues. Across topics, the results indicate that LLMs exhibit a tendency to provide responses that closely align with liberal or left-leaning perspectives rather than conservative or right-leaning ones when user queries include details pertaining to occupation, race, or political affiliation. The findings presented in this study not only reaffirm earlier observations regarding the left-leaning characteristics of LLMs but also surface particular attributes, such as occupation, that are particularly susceptible to such inclinations even when directly steered towards conservatism. As a recommendation to avoid these models providing politicised responses, users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
Related papers
- PRISM: A Methodology for Auditing Biases in Large Language Models [9.751718230639376]
PRISM is a flexible, inquiry-based methodology for auditing Large Language Models.
It seeks to illicit such positions indirectly through task-based inquiry prompting rather than direct inquiry of said preferences.
arXiv Detail & Related papers (2024-10-24T16:57:20Z) - Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
We uncover notable diversity in the ideological stance exhibited across different LLMs and languages.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Assessing Political Bias in Large Language Models [0.624709220163167]
We evaluate the political bias of open-source Large Language Models (LLMs) concerning political issues within the European Union (EU) from a German voter's perspective.
We show that larger models, such as Llama3-70B, tend to align more closely with left-leaning political parties, while smaller models often remain neutral.
arXiv Detail & Related papers (2024-05-17T15:30:18Z) - Measuring Political Bias in Large Language Models: What Is Said and How It Is Said [46.1845409187583]
We propose to measure political bias in LLMs by analyzing both the content and style of their generated content regarding political issues.
Our proposed measure looks at different political issues such as reproductive rights and climate change, at both the content (the substance of the generation) and the style (the lexical polarity) of such bias.
arXiv Detail & Related papers (2024-03-27T18:22:48Z) - Beyond prompt brittleness: Evaluating the reliability and consistency of political worldviews in LLMs [13.036825846417006]
We propose a series of tests to assess the reliability and consistency of large language models' stances on political statements.
We study models ranging in size from 7B to 70B parameters and find that their reliability increases with parameter count.
Larger models show overall stronger alignment with left-leaning parties but differ among policy programs.
arXiv Detail & Related papers (2024-02-27T16:19:37Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
We challenge the prevailing constrained evaluation paradigm for values and opinions in large language models.
We show that models give substantively different answers when not forced.
We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
arXiv Detail & Related papers (2024-02-26T18:00:49Z) - The Political Preferences of LLMs [0.0]
I administer 11 political orientation tests, designed to identify the political preferences of the test taker, to 24 state-of-the-art conversational LLMs.
Most conversational LLMs generate responses that are diagnosed by most political test instruments as manifesting preferences for left-of-center viewpoints.
I demonstrate that LLMs can be steered towards specific locations in the political spectrum through Supervised Fine-Tuning.
arXiv Detail & Related papers (2024-02-02T02:43:10Z) - Inducing Political Bias Allows Language Models Anticipate Partisan
Reactions to Controversies [5.958974943807783]
This study addresses the challenge of understanding political bias in digitized discourse using Large Language Models (LLMs)
We present a comprehensive analytical framework, consisting of Partisan Bias Divergence Assessment and Partisan Class Tendency Prediction.
Our findings reveal the model's effectiveness in capturing emotional and moral nuances, albeit with some challenges in stance detection.
arXiv Detail & Related papers (2023-11-16T08:57:53Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content.
This paper critically examines gender biases in LLM-generated reference letters.
arXiv Detail & Related papers (2023-10-13T16:12:57Z) - Whose Opinions Do Language Models Reflect? [88.35520051971538]
We investigate the opinions reflected by language models (LMs) by leveraging high-quality public opinion polls and their associated human responses.
We find substantial misalignment between the views reflected by current LMs and those of US demographic groups.
Our analysis confirms prior observations about the left-leaning tendencies of some human feedback-tuned LMs.
arXiv Detail & Related papers (2023-03-30T17:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.