Assessing Political Bias in Large Language Models
- URL: http://arxiv.org/abs/2405.13041v3
- Date: Wed, 5 Jun 2024 05:48:27 GMT
- Title: Assessing Political Bias in Large Language Models
- Authors: Luca Rettenberger, Markus Reischl, Mark Schutera,
- Abstract summary: We evaluate the political bias of open-source Large Language Models (LLMs) concerning political issues within the European Union (EU) from a German voter's perspective.
We show that larger models, such as Llama3-70B, tend to align more closely with left-leaning political parties, while smaller models often remain neutral.
- Score: 0.624709220163167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The assessment of bias within Large Language Models (LLMs) has emerged as a critical concern in the contemporary discourse surrounding Artificial Intelligence (AI) in the context of their potential impact on societal dynamics. Recognizing and considering political bias within LLM applications is especially important when closing in on the tipping point toward performative prediction. Then, being educated about potential effects and the societal behavior LLMs can drive at scale due to their interplay with human operators. In this way, the upcoming elections of the European Parliament will not remain unaffected by LLMs. We evaluate the political bias of the currently most popular open-source LLMs (instruct or assistant models) concerning political issues within the European Union (EU) from a German voter's perspective. To do so, we use the "Wahl-O-Mat," a voting advice application used in Germany. From the voting advice of the "Wahl-O-Mat" we quantize the degree of alignment of LLMs with German political parties. We show that larger models, such as Llama3-70B, tend to align more closely with left-leaning political parties, while smaller models often remain neutral, particularly when prompted in English. The central finding is that LLMs are similarly biased, with low variances in the alignment concerning a specific party. Our findings underline the importance of rigorously assessing and making bias transparent in LLMs to safeguard the integrity and trustworthiness of applications that employ the capabilities of performative prediction and the invisible hand of machine learning prediction and language generation.
Related papers
- Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
We uncover notable diversity in the ideological stance exhibited across different LLMs and languages.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
Large Language Models (LLMs) are powerful tools with the potential to benefit society immensely, yet, they have demonstrated biases that perpetuate societal inequalities.
Recent research has shown a growing interest in multi-LLM approaches, which have been demonstrated to be effective in improving the quality of reasoning.
We propose a novel multi-LLM debiasing framework aimed at reducing bias in LLMs.
arXiv Detail & Related papers (2024-09-20T20:24:50Z) - United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections [45.84205238554709]
Large language models (LLMs) are perceived by some as having the potential to revolutionize social science research.
In this study, we examine to what extent LLM-based predictions of public opinion exhibit context-dependent biases.
We predict voting behavior in the 2024 European Parliament elections using a state-of-the-art LLM.
arXiv Detail & Related papers (2024-08-29T16:01:06Z) - GermanPartiesQA: Benchmarking Commercial Large Language Models for Political Bias and Sycophancy [20.06753067241866]
We evaluate and compare the alignment of six LLMs by OpenAI, Anthropic, and Cohere with German party positions.
We conduct our prompt experiment for which we use the benchmark and sociodemographic data of leading German parliamentarians.
arXiv Detail & Related papers (2024-07-25T13:04:25Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
arXiv Detail & Related papers (2024-03-15T04:02:24Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
We challenge the prevailing constrained evaluation paradigm for values and opinions in large language models.
We show that models give substantively different answers when not forced.
We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
arXiv Detail & Related papers (2024-02-26T18:00:49Z) - The Political Preferences of LLMs [0.0]
I administer 11 political orientation tests, designed to identify the political preferences of the test taker, to 24 state-of-the-art conversational LLMs.
Most conversational LLMs generate responses that are diagnosed by most political test instruments as manifesting preferences for left-of-center viewpoints.
I demonstrate that LLMs can be steered towards specific locations in the political spectrum through Supervised Fine-Tuning.
arXiv Detail & Related papers (2024-02-02T02:43:10Z) - Inducing Political Bias Allows Language Models Anticipate Partisan
Reactions to Controversies [5.958974943807783]
This study addresses the challenge of understanding political bias in digitized discourse using Large Language Models (LLMs)
We present a comprehensive analytical framework, consisting of Partisan Bias Divergence Assessment and Partisan Class Tendency Prediction.
Our findings reveal the model's effectiveness in capturing emotional and moral nuances, albeit with some challenges in stance detection.
arXiv Detail & Related papers (2023-11-16T08:57:53Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.