論文の概要: Integrating Wearable Sensor Data and Self-reported Diaries for Personalized Affect Forecasting
- arxiv url: http://arxiv.org/abs/2403.13841v1
- Date: Sat, 16 Mar 2024 17:24:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 18:28:52.703078
- Title: Integrating Wearable Sensor Data and Self-reported Diaries for Personalized Affect Forecasting
- Title(参考訳): 個人化効果予測のためのウェアラブルセンサデータと自己報告日記の統合
- Authors: Zhongqi Yang, Yuning Wang, Ken S. Yamashita, Maryam Sabah, Elahe Khatibi, Iman Azimi, Nikil Dutt, Jessica L. Borelli, Amir M. Rahmani,
- Abstract要約: 本研究では,影響状況予測のためのマルチモーダル深層学習モデルを提案する。
このモデルは、トランスフォーマーエンコーダと事前訓練された言語モデルを組み合わせることで、客観的なメトリクスと自己報告された日記の統合分析を容易にする。
その結果, 予測精度82.50%, 負の影響82.76%, 前週の予測精度82.76%が得られた。
- 参考スコア(独自算出の注目度): 2.36325543943271
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emotional states, as indicators of affect, are pivotal to overall health, making their accurate prediction before onset crucial. Current studies are primarily centered on immediate short-term affect detection using data from wearable and mobile devices. These studies typically focus on objective sensory measures, often neglecting other forms of self-reported information like diaries and notes. In this paper, we propose a multimodal deep learning model for affect status forecasting. This model combines a transformer encoder with a pre-trained language model, facilitating the integrated analysis of objective metrics and self-reported diaries. To validate our model, we conduct a longitudinal study, enrolling college students and monitoring them over a year, to collect an extensive dataset including physiological, environmental, sleep, metabolic, and physical activity parameters, alongside open-ended textual diaries provided by the participants. Our results demonstrate that the proposed model achieves predictive accuracy of 82.50% for positive affect and 82.76% for negative affect, a full week in advance. The effectiveness of our model is further elevated by its explainability.
- Abstract(参考訳): 感情状態は、影響の指標として、全体の健康に重要なものであり、発症前に正確な予測を行う。
現在の研究は、ウェアラブルやモバイルデバイスのデータを用いた、短期的影響の即時検出を中心にしている。
これらの研究は、典型的には客観的な感覚測定に焦点を当てており、日記やノートなど、他の形で報告された情報を無視していることが多い。
本稿では,状況予測に影響を及ぼすマルチモーダルディープラーニングモデルを提案する。
このモデルは、トランスフォーマーエンコーダと事前訓練された言語モデルを組み合わせることで、客観的なメトリクスと自己報告された日記の統合分析を容易にする。
本モデルの有効性を検証するため,大学生を登録して1年以上監視し,生理的,環境的,睡眠的,代謝的,身体活動的パラメータを含む広範囲なデータセットを,参加者が提供したオープンエンドのテキスト日記とともに収集する。
その結果, 予測精度82.50%, 負の影響82.76%, 前週の予測精度82.76%が得られた。
モデルの有効性は、その説明可能性によってさらに高められる。
関連論文リスト
- Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Learning and DiSentangling Patient Static Information from Time-series
Electronic HEalth Record (STEER) [3.079694232219292]
医療における機械学習の最近の研究は、患者のプライバシとアルゴリズムの公正性に関する懸念を提起している。
そこで我々は,患者の静的情報を予測するための時系列電子健康記録データの有用性を体系的に検討した。
生の時系列データだけでなく、機械学習モデルから学習した表現も、さまざまな静的情報を予測するためにトレーニングできることがわかった。
論文 参考訳(メタデータ) (2023-09-20T14:54:48Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Zero-shot causal learning [64.9368337542558]
CaMLは因果メタラーニングフレームワークであり、各介入の効果をタスクとしてパーソナライズした予測を定式化する。
トレーニング時に存在しない新規介入のパーソナライズされた効果を予測することができることを示す。
論文 参考訳(メタデータ) (2023-01-28T20:14:11Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - UBIWEAR: An end-to-end, data-driven framework for intelligent physical
activity prediction to empower mHealth interventions [3.4483987421251516]
UBIWEARは知的身体活動予測のためのエンドツーエンドフレームワークである。
我々の最良のモデルは1087ステップのMAEを達成し、絶対誤差の点で最先端の65%以下である。
論文 参考訳(メタデータ) (2022-12-30T14:18:39Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Objective Prediction of Tomorrow's Affect Using Multi-Modal
Physiological Data and Personal Chronicles: A Study of Monitoring College
Student Well-being in 2020 [0.0]
本研究の目的は、複数の商用機器を用いて、完全自動的かつ客観的なアプローチにより、影響をより正確に予測する能力を検討することである。
1年以上にわたり、スマートウェアラブルと携帯電話を使用した大学生のサンプルから、縦断的生理データと毎日の感情評価を収集した。
その結果,本モデルでは,技術手法に匹敵する精度で,翌日への影響を予測することができた。
論文 参考訳(メタデータ) (2022-01-26T23:06:20Z) - Self-supervision of wearable sensors time-series data for influenza
detection [4.850820365312369]
我々は、自己教師付き学習を用いて、翌日の時系列値を予測することで、正確なILI予測に適応できるリッチな表現を学習できることを示す。
以上の結果から、翌日の睡眠中の安静時心拍数や就寝時間を予測することは、ILI予測により良い表現をもたらすことが示唆された。
論文 参考訳(メタデータ) (2021-12-27T16:09:43Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
鎮静は認知症において高い有病率を有する神経精神医学症状の1つである。
扇動エピソードの検出は、認知症に生きる人々(PLWD)に早期かつタイムリーな介入を提供するのに役立つ。
本研究は,家庭内モニタリングデータを用いてPLWDの動揺リスクを分析するための教師付き学習モデルを提案する。
論文 参考訳(メタデータ) (2021-10-19T11:45:01Z) - Jointly Predicting Job Performance, Personality, Cognitive Ability,
Affect, and Well-Being [42.67003631848889]
本研究では,身体的および生理的行動,心理的状態と特徴,職能を統合した個人予測分析のためのベンチマークを作成する。
我々は、データマイニング技術をベンチマークとして設計し、ウェアラブルセンサから得られた真のノイズと不完全なデータを用いて、12の標準化された精確なテストに基づいて19の構造を予測する。
論文 参考訳(メタデータ) (2020-06-10T14:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。