論文の概要: Optimal Transport for Domain Adaptation through Gaussian Mixture Models
- arxiv url: http://arxiv.org/abs/2403.13847v1
- Date: Mon, 18 Mar 2024 09:32:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 18:28:52.686776
- Title: Optimal Transport for Domain Adaptation through Gaussian Mixture Models
- Title(参考訳): ガウス混合モデルによるドメイン適応のための最適輸送
- Authors: Eduardo Fernandes Montesuma, Fred Maurice Ngolè Mboula, Antoine Souloumiac,
- Abstract要約: 本稿では,ガウス混合モデルを用いてデータ分布をモデル化する手法を提案する。
最適なトランスポートソリューションは、ソースとターゲットドメインの混合コンポーネントのマッチングを提供します。
断層診断における2つの領域適応ベンチマークを用いて,本手法の最先端性能を示す。
- 参考スコア(独自算出の注目度): 7.292229955481438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we explore domain adaptation through optimal transport. We propose a novel approach, where we model the data distributions through Gaussian mixture models. This strategy allows us to solve continuous optimal transport through an equivalent discrete problem. The optimal transport solution gives us a matching between source and target domain mixture components. From this matching, we can map data points between domains, or transfer the labels from the source domain components towards the target domain. We experiment with 2 domain adaptation benchmarks in fault diagnosis, showing that our methods have state-of-the-art performance.
- Abstract(参考訳): 本稿では,最適輸送による領域適応について検討する。
本稿では,ガウス混合モデルを用いてデータ分布をモデル化する手法を提案する。
この戦略により、等価な離散的な問題を通じて連続的な最適輸送を解くことができる。
最適なトランスポートソリューションは、ソースとターゲットドメインの混合コンポーネントのマッチングを提供します。
このマッチングから、ドメイン間でデータポイントをマッピングしたり、ソースドメインコンポーネントからターゲットドメインへラベルを転送したりできます。
断層診断における2つの領域適応ベンチマークを用いて,本手法の最先端性能を示す。
関連論文リスト
- Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
Informative Data Mining (IDM) と呼ばれる新しいフレームワークを提案し、セマンティックセグメンテーションのための効率的なワンショットドメイン適応を実現する。
IDMは、最も情報性の高いサンプルを特定するために不確実性に基づく選択基準を提供し、迅速に適応し、冗長なトレーニングを減らす。
提案手法は,GTA5/SYNTHIAからCityscapesへの適応タスクにおいて,既存の手法より優れ,56.7%/55.4%の最先端のワンショット性能を実現している。
論文 参考訳(メタデータ) (2023-09-25T15:56:01Z) - Train/Test-Time Adaptation with Retrieval [129.8579208970529]
Train/Test-Time Adaptation with Retrieval(rm T3AR$)を紹介します。
$rm T3AR$は、洗練された擬似ラベルと自己教師付きコントラスト目的関数を使用して、所定のモデルを下流タスクに適合させる。
検索モジュールのおかげで、ユーザまたはサービスプロバイダは、下流タスクのモデル適応を改善することができる。
論文 参考訳(メタデータ) (2023-03-25T02:44:57Z) - Robustness, Evaluation and Adaptation of Machine Learning Models in the
Wild [4.304803366354879]
本研究では、ドメインシフトに対するロバスト性の障害の原因と、ドメインロバストモデルをトレーニングするためのアルゴリズムを提案する。
モデル脆性の鍵となる原因はドメイン過度な適合であり、新しいトレーニングアルゴリズムはドメイン一般仮説を抑え、奨励する。
論文 参考訳(メタデータ) (2023-03-05T21:41:16Z) - Few-Shot Adaptation of Pre-Trained Networks for Domain Shift [17.123505029637055]
深層ネットワークは、ソース(トレーニング)データとターゲット(テスト)データの間にドメインシフトがある場合、パフォーマンスが低下する傾向がある。
最近のテスト時間適応手法では,新たなターゲット環境にデプロイされた事前訓練されたソースモデルのバッチ正規化レイヤをストリームデータで更新することで,パフォーマンス劣化を軽減している。
データ効率適応の実践的課題に対処するために,少数ショット領域適応のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-30T16:49:59Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Simpler Certified Radius Maximization by Propagating Covariances [39.851641822878996]
Cifar-10、ImageNet、Places365などのデータセットの認定半径を最大化するアルゴリズムを示します。
これらの基準を満たすことで、データセットの認定半径を適度な深さで最大化し、全体の精度を小さくするアルゴリズムが得られることを示す。
論文 参考訳(メタデータ) (2021-04-13T01:38:36Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
ワッサーシュタインのような最適輸送(OT)距離は、GANやドメイン適応のようないくつかの領域で使用されている。
本稿では,現代のディープラーニングアプリケーションに適用可能な,ロバストなOT最適化の計算効率のよい2つの形式を提案する。
提案手法では, ノイズの多いデータセット上で, 外部分布で劣化したGANモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2020-10-12T17:13:40Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z) - Domain Adaptive Bootstrap Aggregating [5.444459446244819]
ブートストラップ集約(英: bootstrap aggregating)は、予測アルゴリズムの安定性を改善する一般的な方法である。
本稿では, ドメイン適応型バッグング手法と, 隣り合う新しい反復型サンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-01-12T20:02:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。