論文の概要: Optimal Transport for Domain Adaptation through Gaussian Mixture Models
- arxiv url: http://arxiv.org/abs/2403.13847v2
- Date: Wed, 22 Jan 2025 12:47:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:52:57.233665
- Title: Optimal Transport for Domain Adaptation through Gaussian Mixture Models
- Title(参考訳): ガウス混合モデルによるドメイン適応のための最適輸送
- Authors: Eduardo Fernandes Montesuma, Fred Maurice Ngolè Mboula, Antoine Souloumiac,
- Abstract要約: 機械学習システムは、トレーニングとテストデータが固定確率分布からサンプリングされるという仮定の下で運用される。
本研究では,ガウス混合モデル (GMM) 間の最適輸送について検討する。
提案手法は,従来の浅層領域適応法よりも効率がよいことを示す。
- 参考スコア(独自算出の注目度): 7.292229955481438
- License:
- Abstract: Machine learning systems operate under the assumption that training and test data are sampled from a fixed probability distribution. However, this assumptions is rarely verified in practice, as the conditions upon which data was acquired are likely to change. In this context, the adaptation of the unsupervised domain requires minimal access to the data of the new conditions for learning models robust to changes in the data distribution. Optimal transport is a theoretically grounded tool for analyzing changes in distribution, especially as it allows the mapping between domains. However, these methods are usually computationally expensive as their complexity scales cubically with the number of samples. In this work, we explore optimal transport between Gaussian Mixture Models (GMMs), which is conveniently written in terms of the components of source and target GMMs. We experiment with 9 benchmarks, with a total of $85$ adaptation tasks, showing that our methods are more efficient than previous shallow domain adaptation methods, and they scale well with number of samples $n$ and dimensions $d$.
- Abstract(参考訳): 機械学習システムは、トレーニングとテストデータが固定確率分布からサンプリングされるという仮定の下で運用される。
しかし、この仮定は、データが取得された条件が変更される可能性があるため、実際に検証されることは滅多にない。
この文脈では、教師なし領域の適応は、データ分布の変化に頑健な学習モデルのための新しい条件のデータへの最小限のアクセスを必要とする。
最適輸送は、特にドメイン間のマッピングを可能にするため、分布の変化を分析する理論的に基礎付けられたツールである。
しかしながら、これらの手法は通常、その複雑さがサンプルの数と3倍にスケールするため、計算コストがかかる。
本研究では,ガウス混合モデル (GMM) 間の最適輸送について検討する。
提案手法は,従来の浅層ドメイン適応手法よりも効率が高く,サンプル数$n$,次元が$d$で十分スケール可能であることを示す。
関連論文リスト
- Bidirectional Domain Mixup for Domain Adaptive Semantic Segmentation [73.3083304858763]
本稿では,ドメイン適応型セマンティックセグメンテーションタスクにおけるミックスアップの影響を系統的に研究する。
具体的には、ドメインミックスアップをカットとペーストという2ステップで実現します。
フレームワークの主なコンポーネントを実証的に検証するために、広範囲にわたるアブレーション実験を行います。
論文 参考訳(メタデータ) (2023-03-17T05:22:44Z) - Fast OT for Latent Domain Adaptation [25.915629674463286]
本稿では,最適輸送理論を検証可能かつ実装可能な解を用いて,最適な潜在特徴表現を学習するアルゴリズムを提案する。
これは、サンプルをターゲットドメインからソースドメインの配布に転送するコストを最小化することで達成される。
論文 参考訳(メタデータ) (2022-10-02T10:25:12Z) - Connecting adversarial attacks and optimal transport for domain
adaptation [116.50515978657002]
ドメイン適応では、ソースドメインのサンプルに基づいてトレーニングされた分類器をターゲットドメインに適応させることが目標である。
提案手法では,最適なトランスポートを用いて,対象のサンプルをソース・フィクションという名前のドメインにマッピングする。
我々の主なアイデアは、ターゲットドメイン上のc-環状モノトン変換によってソースフィクションを生成することである。
論文 参考訳(メタデータ) (2022-05-30T20:45:55Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Domain Adaptation for Time-Series Classification to Mitigate Covariate
Shift [3.071136270246468]
本稿では,2つのステップに基づいた新しいドメイン適応手法を提案する。
まず、いくつかのサンプルから、ソースからターゲットドメインへの最適なクラス依存変換を探索する。
次に、埋め込み類似性技術を用いて、推論時に対応する変換を選択する。
論文 参考訳(メタデータ) (2022-04-07T10:27:14Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Open Set Domain Adaptation using Optimal Transport [8.076841611508486]
本稿では,ソース分布からターゲット分布へのマッピングを行う2段階の最適輸送手法を提案する。
最初のステップは、最適なトランスポートプランを使用して、これらの新しいクラスから発行されたサンプルを拒否することを目的としている。
2番目のステップは、最適な輸送問題として、目標(クラス比)シフトをまだ解決する。
論文 参考訳(メタデータ) (2020-10-02T15:20:05Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z) - Multi-Source Domain Adaptation for Text Classification via
DistanceNet-Bandits [101.68525259222164]
本研究では,NLPタスクのコンテキストにおいて,サンプル推定に基づく領域間の相違を特徴付ける様々な距離ベース尺度について検討する。
タスクの損失関数と協調して最小化するために,これらの距離測度を付加的な損失関数として用いるディスタンスネットモデルを開発した。
マルチアーム・バンド・コントローラを用いて複数のソース・ドメインを動的に切り替えるDistanceNet-Banditモデルに拡張する。
論文 参考訳(メタデータ) (2020-01-13T15:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。