Graphs Unveiled: Graph Neural Networks and Graph Generation
- URL: http://arxiv.org/abs/2403.13849v1
- Date: Mon, 18 Mar 2024 14:37:27 GMT
- Title: Graphs Unveiled: Graph Neural Networks and Graph Generation
- Authors: László Kovács, Ali Jlidi,
- Abstract summary: This paper provides a comprehensive overview of Graph Neural Networks (GNNs)
We discuss the applications of graph neural networks across various domains.
We present an advanced field in GNNs: graph generation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the hot topics in machine learning is the field of GNN. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. This paper represents a survey, providing a comprehensive overview of Graph Neural Networks (GNNs). We discuss the applications of graph neural networks across various domains. Finally, we present an advanced field in GNNs: graph generation.
Related papers
- A Systematic Review of Deep Graph Neural Networks: Challenges,
Classification, Architectures, Applications & Potential Utility in
Bioinformatics [0.0]
Graph neural networks (GNNs) employ message transmission between graph nodes to represent graph dependencies.
GNNs have the potential to be an excellent tool for solving a wide range of biological challenges in bioinformatics research.
arXiv Detail & Related papers (2023-11-03T10:25:47Z) - Knowledge Enhanced Graph Neural Networks for Graph Completion [0.0]
Knowledge Enhanced Graph Neural Networks (KeGNN) is a neuro-symbolic framework for graph completion.
KeGNN consists of a graph neural network as a base upon which knowledge enhancement layers are stacked.
We instantiate KeGNN in conjunction with two state-of-the-art graph neural networks, Graph Convolutional Networks and Graph Attention Networks.
arXiv Detail & Related papers (2023-03-27T07:53:43Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Graph-level Neural Networks: Current Progress and Future Directions [61.08696673768116]
Graph-level Neural Networks (GLNNs, deep learning-based graph-level learning methods) have been attractive due to their superiority in modeling high-dimensional data.
We propose a systematic taxonomy covering GLNNs upon deep neural networks, graph neural networks, and graph pooling.
arXiv Detail & Related papers (2022-05-31T06:16:55Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Learning Graph Representations [0.0]
Graph Neural Networks (GNNs) are efficient ways to get insight into large dynamic graph datasets.
In this paper, we discuss the graph convolutional neural networks graph autoencoders and Social-temporal graph neural networks.
arXiv Detail & Related papers (2021-02-03T12:07:55Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - Incomplete Graph Representation and Learning via Partial Graph Neural
Networks [7.227805463462352]
In many applications, graph may be coming in an incomplete form where attributes of graph nodes are partially unknown/missing.
Existing GNNs are generally designed on complete graphs which can not deal with attribute-incomplete graph data directly.
We develop a novel partial aggregation based GNNs, named Partial Graph Neural Networks (PaGNNs) for attribute-incomplete graph representation and learning.
arXiv Detail & Related papers (2020-03-23T08:29:59Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
Mining graph data has become a popular research topic in computer science.
The huge amount of network data has posed great challenges for efficient analysis.
This motivates the advent of graph representation which maps the graph into a low-dimension vector space.
arXiv Detail & Related papers (2020-01-02T02:13:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.