Incomplete Graph Representation and Learning via Partial Graph Neural
Networks
- URL: http://arxiv.org/abs/2003.10130v2
- Date: Fri, 4 Jun 2021 09:23:46 GMT
- Title: Incomplete Graph Representation and Learning via Partial Graph Neural
Networks
- Authors: Bo Jiang and Ziyan Zhang
- Abstract summary: In many applications, graph may be coming in an incomplete form where attributes of graph nodes are partially unknown/missing.
Existing GNNs are generally designed on complete graphs which can not deal with attribute-incomplete graph data directly.
We develop a novel partial aggregation based GNNs, named Partial Graph Neural Networks (PaGNNs) for attribute-incomplete graph representation and learning.
- Score: 7.227805463462352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are gaining increasing attention on graph data
learning tasks in recent years. However, in many applications, graph may be
coming in an incomplete form where attributes of graph nodes are partially
unknown/missing. Existing GNNs are generally designed on complete graphs which
can not deal with attribute-incomplete graph data directly. To address this
problem, we develop a novel partial aggregation based GNNs, named Partial Graph
Neural Networks (PaGNNs), for attribute-incomplete graph representation and
learning. Our work is motivated by the observation that the neighborhood
aggregation function in standard GNNs can be equivalently viewed as the
neighborhood reconstruction formulation. Based on it, we define two novel
partial aggregation (reconstruction) functions on incomplete graph and derive
PaGNNs for incomplete graph data learning. Extensive experiments on several
datasets demonstrate the effectiveness and efficiency of the proposed PaGNNs.
Related papers
- MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure [8.00268216176428]
Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing and learning representations from graph-structured data.
A crucial prerequisite for the outstanding performance of GNNs is the availability of complete graph information.
This study proposes a mutual dual-stream graph neural network (MDS-GNN) which implements a mutual benefit learning between features and structure.
arXiv Detail & Related papers (2024-08-09T03:42:56Z) - Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
We propose a novel Graph structure Prompt Learning method (GPL) to enhance the training of Graph networks (GNNs)
GPL employs task-independent graph structure losses to encourage GNNs to learn intrinsic graph characteristics while simultaneously solving downstream tasks.
In experiments on eleven real-world datasets, after being trained by neural prediction, GNNs significantly outperform their original performance on node classification, graph classification, and edge tasks.
arXiv Detail & Related papers (2024-07-16T03:59:18Z) - A Topological characterisation of Weisfeiler-Leman equivalence classes [0.0]
Graph Neural Networks (GNNs) are learning models aimed at processing graphs and signals on graphs.
In this article, we rely on the theory of covering spaces to fully characterize the classes of graphs that GNNs cannot distinguish.
We show that the number of indistinguishable graphs in our dataset grows super-exponentially with the number of nodes.
arXiv Detail & Related papers (2022-06-23T17:28:55Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
Graph Neural Networks (GNNs) are effective tools for graph representation learning.
We propose a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models.
We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs.
arXiv Detail & Related papers (2022-06-01T09:59:09Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Learning on Attribute-Missing Graphs [66.76561524848304]
There is a graph where attributes of only partial nodes could be available and those of the others might be entirely missing.
Existing graph learning methods including the popular GNN cannot provide satisfied learning performance.
We develop a novel distribution matching based GNN called structure-attribute transformer (SAT) for attribute-missing graphs.
arXiv Detail & Related papers (2020-11-03T11:09:52Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Multi-grained Semantics-aware Graph Neural Networks [13.720544777078642]
Graph Neural Networks (GNNs) are powerful techniques in representation learning for graphs.
This work proposes a unified model, AdamGNN, to interactively learn node and graph representations.
Experiments on 14 real-world graph datasets show that AdamGNN can significantly outperform 17 competing models on both node- and graph-wise tasks.
arXiv Detail & Related papers (2020-10-01T07:52:06Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
We propose a novel geometric aggregation scheme for graph neural networks to overcome the two weaknesses.
The proposed aggregation scheme is permutation-invariant and consists of three modules, node embedding, structural neighborhood, and bi-level aggregation.
We also present an implementation of the scheme in graph convolutional networks, termed Geom-GCN, to perform transductive learning on graphs.
arXiv Detail & Related papers (2020-02-13T00:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.