Capsule Neural Networks as Noise Stabilizer for Time Series Data
- URL: http://arxiv.org/abs/2403.13867v1
- Date: Wed, 20 Mar 2024 12:17:49 GMT
- Title: Capsule Neural Networks as Noise Stabilizer for Time Series Data
- Authors: Soyeon Kim, Jihyeon Seong, Hyunkyung Han, Jaesik Choi,
- Abstract summary: Capsule Neural Networks utilize capsules, which bind neurons into a single vector and learn position equivariant features.
In this paper, we investigate the effectiveness of CapsNets in analyzing highly sensitive and noisy time series sensor data.
- Score: 20.29049860598735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capsule Neural Networks utilize capsules, which bind neurons into a single vector and learn position equivariant features, which makes them more robust than original Convolutional Neural Networks. CapsNets employ an affine transformation matrix and dynamic routing with coupling coefficients to learn robustly. In this paper, we investigate the effectiveness of CapsNets in analyzing highly sensitive and noisy time series sensor data. To demonstrate CapsNets robustness, we compare their performance with original CNNs on electrocardiogram data, a medical time series sensor data with complex patterns and noise. Our study provides empirical evidence that CapsNets function as noise stabilizers, as investigated by manual and adversarial attack experiments using the fast gradient sign method and three manual attacks, including offset shifting, gradual drift, and temporal lagging. In summary, CapsNets outperform CNNs in both manual and adversarial attacked data. Our findings suggest that CapsNets can be effectively applied to various sensor systems to improve their resilience to noise attacks. These results have significant implications for designing and implementing robust machine learning models in real world applications. Additionally, this study contributes to the effectiveness of CapsNet models in handling noisy data and highlights their potential for addressing the challenges of noise data in time series analysis.
Related papers
- NIDS Neural Networks Using Sliding Time Window Data Processing with Trainable Activations and its Generalization Capability [0.0]
This paper presents neural networks for network intrusion detection systems (NIDS) that operate on flow data preprocessed with a time window.
It requires only eleven features which do not rely on deep packet inspection and can be found in most NIDS datasets and easily obtained from conventional flow collectors.
The reported training accuracy exceeds 99% for the proposed method with as little as twenty neural network input features.
arXiv Detail & Related papers (2024-10-24T11:36:19Z) - RobCaps: Evaluating the Robustness of Capsule Networks against Affine
Transformations and Adversarial Attacks [11.302789770501303]
Capsule Networks (CapsNets) are able to hierarchically preserve the pose relationships between multiple objects for image classification tasks.
In this paper, we evaluate different factors affecting the robustness of CapsNets, compared to traditional Conal Neural Networks (CNNs)
arXiv Detail & Related papers (2023-04-08T09:58:35Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow learning Networks (FSNet) is a holistic framework for online time-series forecasting.
FSNet balances fast adaptation to recent changes and retrieving similar old knowledge.
Our code will be made publicly available.
arXiv Detail & Related papers (2022-02-23T18:23:07Z) - Spiking CapsNet: A Spiking Neural Network With A Biologically Plausible
Routing Rule Between Capsules [9.658836348699161]
Spiking neural network (SNN) has attracted much attention due to their powerful-temporal information representation ability.
CapsNet does well in assembling and coupling different levels.
We propose Spiking CapsNet by introducing the capsules into the modelling of neural networks.
arXiv Detail & Related papers (2021-11-15T14:23:15Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Security Analysis of Capsule Network Inference using Horizontal
Collaboration [0.5459797813771499]
Capsule network (CapsNet) can encode and preserve spatial orientation of input images.
CapsNet is vulnerable to several malicious attacks, as studied by several researchers in the literature.
arXiv Detail & Related papers (2021-09-22T21:04:20Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - Towards Robust Neural Networks via Close-loop Control [12.71446168207573]
Deep neural networks are vulnerable to various perturbations due to their black-box nature.
Recent study has shown that a deep neural network can misclassify the data even if the input data is perturbed by an imperceptible amount.
arXiv Detail & Related papers (2021-02-03T03:50:35Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.