Quantum simulation of time-dependent Hamiltonians via commutator-free quasi-Magnus operators
- URL: http://arxiv.org/abs/2403.13889v1
- Date: Wed, 20 Mar 2024 18:01:27 GMT
- Title: Quantum simulation of time-dependent Hamiltonians via commutator-free quasi-Magnus operators
- Authors: Pablo Antonio Moreno Casares, Modjtaba Shokrian Zini, Juan Miguel Arrazola,
- Abstract summary: Magnus operator is a popular method for time-dependent Hamiltonian simulation in computational mathematics.
The development of commutator-free quasi-Magnus operators (CFQMs) circumvents this obstacle.
We show that CFQMs are often the most efficient product-formula technique available by more than an order of magnitude.
- Score: 0.7799708033005247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hamiltonian simulation is arguably the most fundamental application of quantum computers. The Magnus operator is a popular method for time-dependent Hamiltonian simulation in computational mathematics, yet its usage requires the implementation of exponentials of commutators, which has previously made it unappealing for quantum computing. The development of commutator-free quasi-Magnus operators (CFQMs) circumvents this obstacle, at the expense of a lack of provable global numeric error bounds. In this work, we establish one such error bound for CFQM-based time-dependent quantum Hamiltonian simulation by carefully estimating the error of each step involved in their definition. This allows us to compare its cost with the alternatives, and show that CFQMs are often the most efficient product-formula technique available by more than an order of magnitude. As a result, we find that CFQMs may be particularly useful to simulate time-dependent Hamiltonians on early fault-tolerant quantum computers.
Related papers
- Variational-Cartan Quantum Dynamics Simulations of Excitation Dynamics [7.865137519552981]
Quantum dynamics simulations (QDSs) are one of the most highly anticipated applications of quantum computing.
Quantum circuit depth for implementing Hamiltonian simulation algorithms is commonly time dependent.
In this work, we generalize this CD-based Hamiltonian simulation algorithm for studying time-dependent systems by combining it with variational Hamiltonian simulation.
arXiv Detail & Related papers (2024-06-20T09:11:46Z) - Benchmarking a heuristic Floquet adiabatic algorithm for the Max-Cut problem [0.0]
We show that adiabatic evolution can be performed with a fixed, finite Trotter step.
We give numerical evidence using matrix-product-state simulations that it can optimally solve the Max-Cut problem.
Extrapolating our numerical results, we estimate the resources needed for a quantum computer to compete with classical exact or approximate solvers.
arXiv Detail & Related papers (2024-04-24T17:29:03Z) - Quantum Simulations for Strong-Field QED [0.0]
We perform quantum simulations of strong-field QED (SFQED) in $3+1$ dimensions.
The interactions relevant for Breit-Wheeler pair-production are transformed into a quantum circuit.
Quantum simulations of a "null double slit" experiment are found to agree well with classical simulations.
arXiv Detail & Related papers (2023-11-30T03:05:26Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Optimal/Nearly-optimal simulation of multi-periodic time-dependent
Hamiltonians [0.0]
We establish a QET-based approach for simulating time-dependent Hamiltonians with multiple time-periodicity.
Overcoming the difficulty of time-dependency, our protocol can simulate the dynamics under multi-periodic time-dependent Hamiltonians.
arXiv Detail & Related papers (2023-01-16T01:53:09Z) - Well-conditioned multi-product formulas for hardware-friendly
Hamiltonian simulation [1.433758865948252]
We show how to design MPFs that do not amplify the hardware and sampling errors, and demonstrate their performance.
We observe an error reduction of up to an order of magnitude when compared to a product formula approach by suppressing hardware noise with Pauli Twirling, pulse efficient transpilation, and a novel zero-noise extrapolation based on scaled cross-resonance pulses.
arXiv Detail & Related papers (2022-07-22T18:00:05Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.