Benchmarking a heuristic Floquet adiabatic algorithm for the Max-Cut problem
- URL: http://arxiv.org/abs/2404.16001v1
- Date: Wed, 24 Apr 2024 17:29:03 GMT
- Title: Benchmarking a heuristic Floquet adiabatic algorithm for the Max-Cut problem
- Authors: Etienne Granet, Henrik Dreyer,
- Abstract summary: We show that adiabatic evolution can be performed with a fixed, finite Trotter step.
We give numerical evidence using matrix-product-state simulations that it can optimally solve the Max-Cut problem.
Extrapolating our numerical results, we estimate the resources needed for a quantum computer to compete with classical exact or approximate solvers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: According to the adiabatic theorem of quantum mechanics, a system initially in the ground state of a Hamiltonian remains in the ground state if one slowly changes the Hamiltonian. This can be used in principle to solve hard problems on quantum computers. Generically, however, implementation of this Hamiltonian dynamics on digital quantum computers requires scaling Trotter step size with system size and simulation time, which incurs a large gate count. In this work, we argue that for classical optimization problems, the adiabatic evolution can be performed with a fixed, finite Trotter step. This "Floquet adiabatic evolution" reduces by several orders of magnitude the gate count compared to the usual, continuous-time adiabatic evolution. We give numerical evidence using matrix-product-state simulations that it can optimally solve the Max-Cut problem on $3$-regular graphs in a large number of instances, with surprisingly low runtime, even with bond dimensions as low as $D=2$. Extrapolating our numerical results, we estimate the resources needed for a quantum computer to compete with classical exact or approximate solvers for this specific problem.
Related papers
- Large-scale quantum annealing simulation with tensor networks and belief propagation [0.0]
We show that quantum annealing for 3-regular graphs can be classically simulated even at scales of 1000 qubits and 5000000qubit gates.
For non-degenerate instances, the unique solution can be read out from the final reduced single-qubit states.
For degenerate problems, such as MaxCut, we introduce an approximate measurement simulation algorithm for graph tensor-network states.
arXiv Detail & Related papers (2024-09-18T18:00:08Z) - Ancillary entangling Floquet kicks for accelerating quantum algorithms [0.21990652930491855]
We accelerate quantum simulation using digital multi-qubit gates that entangle primary system qubits with the ancillary qubits.
For simple but nontrivial short-ranged, infinite long-ranged transverse-field Ising models, and the hydrogen molecule model after qubit encoding, we show improvement in the time to solution by one hundred percent.
arXiv Detail & Related papers (2024-08-23T19:40:24Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Diabatic Quantum Annealing for the Frustrated Ring Model [0.7046417074932257]
Adiabatic evolutions can lead to evolution times that scale exponentially with the system size.
We show that non-adiabatic evolutions with optimized annealing schedules can bypass this exponential slowdown.
arXiv Detail & Related papers (2022-12-05T22:16:17Z) - Making Trotterization adaptive and energy-self-correcting for NISQ
devices and beyond [0.0]
Simulation of continuous time evolution requires time discretization on both classical and quantum computers.
We introduce a quantum algorithm to solve this problem, providing a controlled solution of the quantum many-body dynamics of local observables.
Our algorithm can be potentially useful on a more general level whenever time discretization is involved concerning, for instance, also numerical approaches based on time-evolving block decimation methods.
arXiv Detail & Related papers (2022-09-26T12:54:32Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Iterative Quantum Assisted Eigensolver [0.0]
We provide a hybrid quantum-classical algorithm for approximating the ground state of a Hamiltonian.
Our algorithm builds on the powerful Krylov subspace method in a way that is suitable for current quantum computers.
arXiv Detail & Related papers (2020-10-12T12:25:16Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.