Towards a connection between the capacitated vehicle routing problem and the constrained centroid-based clustering
- URL: http://arxiv.org/abs/2403.14013v1
- Date: Wed, 20 Mar 2024 22:24:36 GMT
- Title: Towards a connection between the capacitated vehicle routing problem and the constrained centroid-based clustering
- Authors: Abdelhakim Abdellaoui, Loubna Benabbou, Issmail El Hallaoui,
- Abstract summary: Efficiently solving a vehicle routing problem in a practical runtime is a critical challenge for delivery management companies.
This paper explores both a theoretical and experimental connection between the Capacitated Vehicle Problem (CVRP) and the Constrainedid-Based Clustering (CCBC)
The proposed framework consists of three stages. At the first step, a constrained centroid-based clustering algorithm generates feasible clusters of customers.
- Score: 1.3927943269211591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficiently solving a vehicle routing problem (VRP) in a practical runtime is a critical challenge for delivery management companies. This paper explores both a theoretical and experimental connection between the Capacitated Vehicle Routing Problem (CVRP) and the Constrained Centroid-Based Clustering (CCBC). Reducing a CVRP to a CCBC is a synonym for a transition from an exponential to a polynomial complexity using commonly known algorithms for clustering, i.e K-means. At the beginning, we conduct an exploratory analysis to highlight the existence of such a relationship between the two problems through illustrative small-size examples and simultaneously deduce some mathematically-related formulations and properties. On a second level, the paper proposes a CCBC based approach endowed with some enhancements. The proposed framework consists of three stages. At the first step, a constrained centroid-based clustering algorithm generates feasible clusters of customers. This methodology incorporates three enhancement tools to achieve near-optimal clusters, namely: a multi-start procedure for initial centroids, a customer assignment metric, and a self-adjustment mechanism for choosing the number of clusters. At the second step, a traveling salesman problem (T SP) solver is used to optimize the order of customers within each cluster. Finally, we introduce a process relying on routes cutting and relinking procedure, which calls upon solving a linear and integer programming model to further improve the obtained routes. This step is inspired by the ruin & recreate algorithm. This approach is an extension of the classical cluster-first, route-second method and provides near-optimal solutions on well-known benchmark instances in terms of solution quality and computational runtime, offering a milestone in solving VRP.
Related papers
- A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm.
In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries.
arXiv Detail & Related papers (2024-07-14T13:37:03Z) - Spatial-temporal-demand clustering for solving large-scale vehicle
routing problems with time windows [0.0]
We propose a decompose-route-improve (DRI) framework that groups customers using clustering.
Its similarity metric incorporates customers' spatial, temporal, and demand data.
We apply pruned local search (LS) between solved subproblems to improve the overall solution.
arXiv Detail & Related papers (2024-01-20T06:06:01Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Neural Capacitated Clustering [6.155158115218501]
We propose a new method for the Capacitated Clustering Problem (CCP) that learns a neural network to predict the assignment probabilities of points to cluster centers.
In our experiments on artificial data and two real world datasets our approach outperforms several state-of-the-art mathematical and solvers from the literature.
arXiv Detail & Related papers (2023-02-10T09:33:44Z) - Fast conformational clustering of extensive molecular dynamics
simulation data [19.444636864515726]
We present an unsupervised data processing workflow that is specifically designed to obtain a fast conformational clustering of long trajectories.
We combine two dimensionality reduction algorithms (cc_analysis and encodermap) with a density-based spatial clustering algorithm (HDBSCAN)
With the help of four test systems we illustrate the capability and performance of this clustering workflow.
arXiv Detail & Related papers (2023-01-11T14:36:43Z) - Gradient Based Clustering [72.15857783681658]
We propose a general approach for distance based clustering, using the gradient of the cost function that measures clustering quality.
The approach is an iterative two step procedure (alternating between cluster assignment and cluster center updates) and is applicable to a wide range of functions.
arXiv Detail & Related papers (2022-02-01T19:31:15Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
We present a new branch-and-bound algorithm for semi-supervised MSSC.
Background knowledge is incorporated as pairwise must-link and cannot-link constraints.
For the first time, the proposed global optimization algorithm efficiently manages to solve real-world instances up to 800 data points.
arXiv Detail & Related papers (2021-11-30T17:08:53Z) - (k, l)-Medians Clustering of Trajectories Using Continuous Dynamic Time
Warping [57.316437798033974]
In this work we consider the problem of center-based clustering of trajectories.
We propose the usage of a continuous version of DTW as distance measure, which we call continuous dynamic time warping (CDTW)
We show a practical way to compute a center from a set of trajectories and subsequently iteratively improve it.
arXiv Detail & Related papers (2020-12-01T13:17:27Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.