Accelerating ViT Inference on FPGA through Static and Dynamic Pruning
- URL: http://arxiv.org/abs/2403.14047v2
- Date: Fri, 12 Apr 2024 05:07:27 GMT
- Title: Accelerating ViT Inference on FPGA through Static and Dynamic Pruning
- Authors: Dhruv Parikh, Shouyi Li, Bingyi Zhang, Rajgopal Kannan, Carl Busart, Viktor Prasanna,
- Abstract summary: Vision Transformers (ViTs) have achieved state-of-the-art accuracy on various computer vision tasks.
Weight and token pruning are two well-known methods for reducing complexity.
We propose an algorithm-hardware codesign for accelerating ViT on FPGA through simultaneous pruning.
- Score: 2.8595179027282907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision Transformers (ViTs) have achieved state-of-the-art accuracy on various computer vision tasks. However, their high computational complexity prevents them from being applied to many real-world applications. Weight and token pruning are two well-known methods for reducing complexity: weight pruning reduces the model size and associated computational demands, while token pruning further dynamically reduces the computation based on the input. Combining these two techniques should significantly reduce computation complexity and model size; however, naively integrating them results in irregular computation patterns, leading to significant accuracy drops and difficulties in hardware acceleration. Addressing the above challenges, we propose a comprehensive algorithm-hardware codesign for accelerating ViT on FPGA through simultaneous pruning -combining static weight pruning and dynamic token pruning. For algorithm design, we systematically combine a hardware-aware structured block-pruning method for pruning model parameters and a dynamic token pruning method for removing unimportant token vectors. Moreover, we design a novel training algorithm to recover the model's accuracy. For hardware design, we develop a novel hardware accelerator for executing the pruned model. The proposed hardware design employs multi-level parallelism with load balancing strategy to efficiently deal with the irregular computation pattern led by the two pruning approaches. Moreover, we develop an efficient hardware mechanism for efficiently executing the on-the-fly token pruning.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers [56.37495946212932]
Vision transformers (ViTs) have demonstrated their superior accuracy for computer vision tasks compared to convolutional neural networks (CNNs)
This work proposes Quasar-ViT, a hardware-oriented quantization-aware architecture search framework for ViTs.
arXiv Detail & Related papers (2024-07-25T16:35:46Z) - Hybrid Dynamic Pruning: A Pathway to Efficient Transformer Inference [1.0919012968294923]
We introduce a novel algorithm-architecture co-design approach that accelerates transformers using head sparsity, block sparsity and approximation opportunities to reduce computations in attention and reduce memory access.
With the observation of the huge redundancy in attention scores and attention heads, we propose a novel integer-based row-balanced block pruning to prune unimportant blocks in the attention matrix at run time.
Also propose integer-based head pruning to detect and prune unimportant heads at an early stage at run time.
arXiv Detail & Related papers (2024-07-17T11:15:16Z) - LPViT: Low-Power Semi-structured Pruning for Vision Transformers [42.91130720962956]
Vision transformers (ViTs) have emerged as a promising alternative to convolutional neural networks for image analysis tasks.
One significant drawback of ViTs is their resource-intensive nature, leading to increased memory footprint, complexity, and power consumption.
We introduce a new block-structured pruning to address the resource-intensive issue for ViTs, offering a balanced trade-off between accuracy and hardware acceleration.
arXiv Detail & Related papers (2024-07-02T08:58:19Z) - TransCODE: Co-design of Transformers and Accelerators for Efficient
Training and Inference [6.0093441900032465]
We propose a framework that simulates transformer inference and training on a design space of accelerators.
We use this simulator in conjunction with the proposed co-design technique, called TransCODE, to obtain the best-performing models.
The obtained transformer-accelerator pair achieves 0.3% higher accuracy than the state-of-the-art pair.
arXiv Detail & Related papers (2023-03-27T02:45:18Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
Neuromorphic computing is an emerging paradigm that confronts this imbalance by computations directly in analog memories.
This work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa.
arXiv Detail & Related papers (2022-12-29T15:10:59Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
Attention-based neural networks have become pervasive in many AI tasks.
The use of the attention mechanism and feed-forward network (FFN) demands excessive computational and memory resources.
This paper proposes a hardware-friendly variant that adopts a unified butterfly sparsity pattern to approximate both the attention mechanism and the FFNs.
arXiv Detail & Related papers (2022-09-20T09:28:26Z) - A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA
Through Sparse Attention and Dynamic Pipelining [28.336502115532905]
This paper proposes a coherent sequence length adaptive algorithm-hardware co-design for Transformer acceleration.
We develop a hardware-friendly sparse attention operator and a length-aware hardware resource scheduling algorithm.
Our design has very small accuracy loss and has 80.2 $times$ and 2.6 $times$ speedup compared to CPU and GPU implementation.
arXiv Detail & Related papers (2022-08-07T05:48:38Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
We introduce a new sparsity dimension, namely pattern-based sparsity that comprises pattern and connectivity sparsity, and becoming both highly accurate and hardware friendly.
Our approach on the new pattern-based sparsity naturally fits into compiler optimization for highly efficient DNN execution on mobile platforms.
arXiv Detail & Related papers (2020-01-20T16:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.