QuartDepth: Post-Training Quantization for Real-Time Depth Estimation on the Edge
- URL: http://arxiv.org/abs/2503.16709v1
- Date: Thu, 20 Mar 2025 21:03:10 GMT
- Title: QuartDepth: Post-Training Quantization for Real-Time Depth Estimation on the Edge
- Authors: Xuan Shen, Weize Ma, Jing Liu, Changdi Yang, Rui Ding, Quanyi Wang, Henghui Ding, Wei Niu, Yanzhi Wang, Pu Zhao, Jun Lin, Jiuxiang Gu,
- Abstract summary: We propose QuartDepth which adopts post-training quantization to quantize MDE models with hardware accelerations for ASICs.<n>Our approach involves quantizing both weights and activations to 4-bit precision, reducing the model size and computation cost.<n>We design a flexible and programmable hardware accelerator by supporting kernel fusion and customized instruction programmability.
- Score: 55.75103034526652
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Monocular Depth Estimation (MDE) has emerged as a pivotal task in computer vision, supporting numerous real-world applications. However, deploying accurate depth estimation models on resource-limited edge devices, especially Application-Specific Integrated Circuits (ASICs), is challenging due to the high computational and memory demands. Recent advancements in foundational depth estimation deliver impressive results but further amplify the difficulty of deployment on ASICs. To address this, we propose QuartDepth which adopts post-training quantization to quantize MDE models with hardware accelerations for ASICs. Our approach involves quantizing both weights and activations to 4-bit precision, reducing the model size and computation cost. To mitigate the performance degradation, we introduce activation polishing and compensation algorithm applied before and after activation quantization, as well as a weight reconstruction method for minimizing errors in weight quantization. Furthermore, we design a flexible and programmable hardware accelerator by supporting kernel fusion and customized instruction programmability, enhancing throughput and efficiency. Experimental results demonstrate that our framework achieves competitive accuracy while enabling fast inference and higher energy efficiency on ASICs, bridging the gap between high-performance depth estimation and practical edge-device applicability. Code: https://github.com/shawnricecake/quart-depth
Related papers
- BoA: Attention-aware Post-training Quantization without Backpropagation [11.096116957844014]
Post-training quantization (PTQ) is a promising solution for deploying large language models (LLMs) on resource-constrained devices.
We introduce a novel backpropagation-free PTQ algorithm that optimize integer weights by considering inter-layer dependencies.
arXiv Detail & Related papers (2024-06-19T11:53:21Z) - Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip [0.9187138676564589]
We present High Granularity Quantization (HGQ), an innovative quantization-aware training method.
HGQ fine-tune the per-weight and per-activation precision by making them optimizable through gradient descent.
This approach enables ultra-low latency and low power neural networks on hardware capable of performing arithmetic operations.
arXiv Detail & Related papers (2024-05-01T17:18:46Z) - EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for
the Acceleration of Lightweight LLMs on the Edge [40.85258685379659]
Post-Training Quantization (PTQ) methods degrade in quality when quantizing weights, activations, and KV cache together to below 8 bits.
Many Quantization-Aware Training (QAT) works quantize model weights, leaving the activations untouched, which do not fully exploit the potential of quantization for inference acceleration on the edge.
We propose EdgeQAT, the Entropy and Distribution Guided QAT for the optimization of lightweight LLMs to achieve inference acceleration on Edge devices.
arXiv Detail & Related papers (2024-02-16T16:10:38Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Efficient Neural PDE-Solvers using Quantization Aware Training [71.0934372968972]
We show that quantization can successfully lower the computational cost of inference while maintaining performance.
Our results on four standard PDE datasets and three network architectures show that quantization-aware training works across settings and three orders of FLOPs magnitudes.
arXiv Detail & Related papers (2023-08-14T09:21:19Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.