Hypothesis-Driven Deep Learning for Out of Distribution Detection
- URL: http://arxiv.org/abs/2403.14058v1
- Date: Thu, 21 Mar 2024 01:06:47 GMT
- Title: Hypothesis-Driven Deep Learning for Out of Distribution Detection
- Authors: Yasith Jayawardana, Azeem Ahmad, Balpreet S. Ahluwalia, Rafi Ahmad, Sampath Jayarathna, Dushan N. Wadduwage,
- Abstract summary: We propose a hypothesis-driven approach to quantify whether a new sample is InD or OoD.
We adapt our method to detect an unseen sample of bacteria to a trained deep learning model, and show that it reveals interpretable differences between InD and OoD latent responses.
- Score: 0.8191518216608217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictions of opaque black-box systems are frequently deployed in high-stakes applications such as healthcare. For such applications, it is crucial to assess how models handle samples beyond the domain of training data. While several metrics and tests exist to detect out-of-distribution (OoD) data from in-distribution (InD) data to a deep neural network (DNN), their performance varies significantly across datasets, models, and tasks, which limits their practical use. In this paper, we propose a hypothesis-driven approach to quantify whether a new sample is InD or OoD. Given a trained DNN and some input, we first feed the input through the DNN and compute an ensemble of OoD metrics, which we term latent responses. We then formulate the OoD detection problem as a hypothesis test between latent responses of different groups, and use permutation-based resampling to infer the significance of the observed latent responses under a null hypothesis. We adapt our method to detect an unseen sample of bacteria to a trained deep learning model, and show that it reveals interpretable differences between InD and OoD latent responses. Our work has implications for systematic novelty detection and informed decision-making from classifiers trained on a subset of labels.
Related papers
- DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
Training-free test-time dynamic adapter (TDA) is a promising approach to address this issue.
We propose a simple yet effective method for DistributiOnal Test-time Adaptation (Dota)
Dota continually estimates the distributions of test samples, allowing the model to continually adapt to the deployment environment.
arXiv Detail & Related papers (2024-09-28T15:03:28Z) - Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
Deep neural networks are proven to be vulnerable to data poisoning attacks.
It is quite beneficial and challenging to detect poisoned samples from a mixed dataset.
We propose an Iterative Filtering approach for UEs identification.
arXiv Detail & Related papers (2024-08-15T13:26:13Z) - Uncertainty Measurement of Deep Learning System based on the Convex Hull of Training Sets [0.13265175299265505]
We propose To-hull Uncertainty and Closure Ratio, which measures an uncertainty of trained model based on the convex hull of training data.
It can observe the positional relation between the convex hull of the learned data and an unseen sample and infer how extrapolate the sample is from the convex hull.
arXiv Detail & Related papers (2024-05-25T06:25:24Z) - Out-of-Distribution Detection with a Single Unconditional Diffusion Model [54.15132801131365]
Out-of-distribution (OOD) detection is a critical task in machine learning that seeks to identify abnormal samples.
Traditionally, unsupervised methods utilize a deep generative model for OOD detection.
This paper explores whether a single model can perform OOD detection across diverse tasks.
arXiv Detail & Related papers (2024-05-20T08:54:03Z) - Window-Based Distribution Shift Detection for Deep Neural Networks [21.73028341299301]
We study the case of monitoring the healthy operation of a deep neural network (DNN) receiving a stream of data.
Using selective prediction principles, we propose a distribution deviation detection method for DNNs.
Our novel detection method performs on-par or better than the state-of-the-art, while consuming substantially lower time.
arXiv Detail & Related papers (2022-10-19T21:27:25Z) - A Novel Explainable Out-of-Distribution Detection Approach for Spiking
Neural Networks [6.100274095771616]
This work presents a novel OoD detector that can identify whether test examples input to a Spiking Neural Network belong to the distribution of the data over which it was trained.
We characterize the internal activations of the hidden layers of the network in the form of spike count patterns.
A local explanation method is devised to produce attribution maps revealing which parts of the input instance push most towards the detection of an example as an OoD sample.
arXiv Detail & Related papers (2022-09-30T11:16:35Z) - Do Deep Neural Networks Always Perform Better When Eating More Data? [82.6459747000664]
We design experiments from Identically Independent Distribution(IID) and Out of Distribution(OOD)
Under IID condition, the amount of information determines the effectivity of each sample, the contribution of samples and difference between classes determine the amount of class information.
Under OOD condition, the cross-domain degree of samples determine the contributions, and the bias-fitting caused by irrelevant elements is a significant factor of cross-domain.
arXiv Detail & Related papers (2022-05-30T15:40:33Z) - iDECODe: In-distribution Equivariance for Conformal Out-of-distribution
Detection [24.518698391381204]
Machine learning methods such as deep neural networks (DNNs) often generate incorrect predictions with high confidence.
We propose the new method iDECODe, leveraging in-distribution equivariance for conformal OOD detection.
We demonstrate the efficacy of iDECODe by experiments on image and audio datasets, obtaining state-of-the-art results.
arXiv Detail & Related papers (2022-01-07T05:21:40Z) - Out-of-distribution detection for regression tasks: parameter versus
predictor entropy [2.026281591452464]
It is crucial to detect when an instance lies downright too far from the training samples for the machine learning model to be trusted.
For neural networks, one approach to this task consists of learning a diversity of predictors that all can explain the training data.
We propose a new way of estimating the entropy of a distribution on predictors based on nearest neighbors in function space.
arXiv Detail & Related papers (2020-10-24T21:41:21Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
We propose two strategies for freeing a neural network from tuning with OoD data, while improving its OoD detection performance.
We specifically propose to decompose confidence scoring as well as a modified input pre-processing method.
Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference.
arXiv Detail & Related papers (2020-02-26T04:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.