Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data
- URL: http://arxiv.org/abs/2002.11297v2
- Date: Tue, 31 Mar 2020 18:13:34 GMT
- Title: Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data
- Authors: Yen-Chang Hsu, Yilin Shen, Hongxia Jin, Zsolt Kira
- Abstract summary: We propose two strategies for freeing a neural network from tuning with OoD data, while improving its OoD detection performance.
We specifically propose to decompose confidence scoring as well as a modified input pre-processing method.
Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference.
- Score: 87.61504710345528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have attained remarkable performance when applied to
data that comes from the same distribution as that of the training set, but can
significantly degrade otherwise. Therefore, detecting whether an example is
out-of-distribution (OoD) is crucial to enable a system that can reject such
samples or alert users. Recent works have made significant progress on OoD
benchmarks consisting of small image datasets. However, many recent methods
based on neural networks rely on training or tuning with both in-distribution
and out-of-distribution data. The latter is generally hard to define a-priori,
and its selection can easily bias the learning. We base our work on a popular
method ODIN, proposing two strategies for freeing it from the needs of tuning
with OoD data, while improving its OoD detection performance. We specifically
propose to decompose confidence scoring as well as a modified input
pre-processing method. We show that both of these significantly help in
detection performance. Our further analysis on a larger scale image dataset
shows that the two types of distribution shifts, specifically semantic shift
and non-semantic shift, present a significant difference in the difficulty of
the problem, providing an analysis of when ODIN-like strategies do or do not
work.
Related papers
- Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
We introduce DIAG, a training-free Diffusion-based In-distribution Anomaly Generation pipeline for data augmentation.
Unlike conventional image generation techniques, we implement a human-in-the-loop pipeline, where domain experts provide multimodal guidance to the model.
We demonstrate the efficacy and versatility of DIAG with respect to state-of-the-art data augmentation approaches on the challenging KSDD2 dataset.
arXiv Detail & Related papers (2024-07-04T14:28:52Z) - Anomaly Detection with Test Time Augmentation and Consistency Evaluation [13.709281244889691]
We propose a simple, yet effective anomaly detection algorithm named Test Time Augmentation Anomaly Detection (TTA-AD)
We observe that in-distribution data enjoy more consistent predictions for its original and augmented versions on a trained network than out-distribution data.
Experiments on various high-resolution image benchmark datasets demonstrate that TTA-AD achieves comparable or better detection performance.
arXiv Detail & Related papers (2022-06-06T04:27:06Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - Entropy Maximization and Meta Classification for Out-Of-Distribution
Detection in Semantic Segmentation [7.305019142196585]
"Out-of-distribution" (OoD) samples are crucial for many applications such as automated driving.
A natural baseline approach to OoD detection is to threshold on the pixel-wise softmax entropy.
We present a two-step procedure that significantly improves that approach.
arXiv Detail & Related papers (2020-12-09T11:01:06Z) - Understanding Anomaly Detection with Deep Invertible Networks through
Hierarchies of Distributions and Features [4.25227087152716]
Convolutional networks learn similar low-level feature distributions when trained on any natural image dataset.
When the discriminative features between inliers and outliers are on a high-level, anomaly detection becomes particularly challenging.
We propose two methods to remove the negative impact of model bias and domain prior on detecting high-level differences.
arXiv Detail & Related papers (2020-06-18T20:56:14Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.