Learning-based Multi-continuum Model for Multiscale Flow Problems
- URL: http://arxiv.org/abs/2403.14084v2
- Date: Thu, 20 Jun 2024 07:50:42 GMT
- Title: Learning-based Multi-continuum Model for Multiscale Flow Problems
- Authors: Fan Wang, Yating Wang, Wing Tat Leung, Zongben Xu,
- Abstract summary: We propose a learning-based multi-continuum model to enrich the homogenized equation and improve the accuracy of the single model for multiscale problems.
Our proposed learning-based multi-continuum model can resolve multiple interacted media within each coarse grid block and describe the mass transfer among them.
- Score: 24.93423649301792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiscale problems can usually be approximated through numerical homogenization by an equation with some effective parameters that can capture the macroscopic behavior of the original system on the coarse grid to speed up the simulation. However, this approach usually assumes scale separation and that the heterogeneity of the solution can be approximated by the solution average in each coarse block. For complex multiscale problems, the computed single effective properties/continuum might be inadequate. In this paper, we propose a novel learning-based multi-continuum model to enrich the homogenized equation and improve the accuracy of the single continuum model for multiscale problems with some given data. Without loss of generalization, we consider a two-continuum case. The first flow equation keeps the information of the original homogenized equation with an additional interaction term. The second continuum is newly introduced, and the effective permeability in the second flow equation is determined by a neural network. The interaction term between the two continua aligns with that used in the Dual-porosity model but with a learnable coefficient determined by another neural network. The new model with neural network terms is then optimized using trusted data. We discuss both direct back-propagation and the adjoint method for the PDE-constraint optimization problem. Our proposed learning-based multi-continuum model can resolve multiple interacted media within each coarse grid block and describe the mass transfer among them, and it has been demonstrated to significantly improve the simulation results through numerical experiments involving both linear and nonlinear flow equations.
Related papers
- Solving the Discretised Multiphase Flow Equations with Interface
Capturing on Structured Grids Using Machine Learning Libraries [0.6299766708197884]
This paper solves the discretised multiphase flow equations using tools and methods from machine-learning libraries.
For the first time, finite element discretisations of multiphase flows can be solved using an approach based on (untrained) convolutional neural networks.
arXiv Detail & Related papers (2024-01-12T18:42:42Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver.
DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics.
We present various benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-dependent problem.
arXiv Detail & Related papers (2022-02-25T20:46:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
We present a new hybrid physics-based machine-learning approach to reservoir modeling.
The methodology relies on a series of deep adversarial neural network architecture with physics-based regularization.
The proposed methodology is a simple and elegant way to instill physical knowledge to machine-learning algorithms.
arXiv Detail & Related papers (2020-01-15T08:20:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.