Text-Enhanced Data-free Approach for Federated Class-Incremental Learning
- URL: http://arxiv.org/abs/2403.14101v1
- Date: Thu, 21 Mar 2024 03:24:01 GMT
- Title: Text-Enhanced Data-free Approach for Federated Class-Incremental Learning
- Authors: Minh-Tuan Tran, Trung Le, Xuan-May Le, Mehrtash Harandi, Dinh Phung,
- Abstract summary: Data-Free Knowledge Transfer plays a crucial role in addressing forgetting and data privacy problems.
Prior approaches lack the crucial synergy between DFKT and the model training phases.
We introduce LANDER to address this issue by utilizing label text embeddings produced by pretrained language models.
- Score: 36.70524853012054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Class-Incremental Learning (FCIL) is an underexplored yet pivotal issue, involving the dynamic addition of new classes in the context of federated learning. In this field, Data-Free Knowledge Transfer (DFKT) plays a crucial role in addressing catastrophic forgetting and data privacy problems. However, prior approaches lack the crucial synergy between DFKT and the model training phases, causing DFKT to encounter difficulties in generating high-quality data from a non-anchored latent space of the old task model. In this paper, we introduce LANDER (Label Text Centered Data-Free Knowledge Transfer) to address this issue by utilizing label text embeddings (LTE) produced by pretrained language models. Specifically, during the model training phase, our approach treats LTE as anchor points and constrains the feature embeddings of corresponding training samples around them, enriching the surrounding area with more meaningful information. In the DFKT phase, by using these LTE anchors, LANDER can synthesize more meaningful samples, thereby effectively addressing the forgetting problem. Additionally, instead of tightly constraining embeddings toward the anchor, the Bounding Loss is introduced to encourage sample embeddings to remain flexible within a defined radius. This approach preserves the natural differences in sample embeddings and mitigates the embedding overlap caused by heterogeneous federated settings. Extensive experiments conducted on CIFAR100, Tiny-ImageNet, and ImageNet demonstrate that LANDER significantly outperforms previous methods and achieves state-of-the-art performance in FCIL. The code is available at https://github.com/tmtuan1307/lander.
Related papers
- Weakly Contrastive Learning via Batch Instance Discrimination and Feature Clustering for Small Sample SAR ATR [7.2932563202952725]
We propose a novel framework named Batch Instance Discrimination and Feature Clustering (BIDFC)
In this framework, embedding distance between samples should be moderate because of the high similarity between samples in the SAR images.
Experimental results on the moving and stationary target acquisition and recognition (MSTAR) database indicate a 91.25% classification accuracy of our method fine-tuned on only 3.13% training data.
arXiv Detail & Related papers (2024-08-07T08:39:33Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
We propose a novel co-training method that assigns weights based on the training dynamics of the classifiers to the distantly supervised labels.
By assigning importance weights instead of filtering out examples based on an arbitrary threshold on the predicted confidence, we maximize the usage of automatically labeled data.
The proposed method obtains an improvement of 1.5% in Macro F1 over the distant supervision baseline, and substantial improvements over several other strong SSL baselines.
arXiv Detail & Related papers (2024-06-20T18:35:47Z) - FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-preserving Feature Augmentation [15.298650496155508]
Federated Learning (FL) enables model development by leveraging data distributed across numerous edge devices without transferring local data to a central server.
Existing FL methods face challenges when dealing with scarce and label-skewed data across devices, resulting in local model overfitting and drift.
We propose a pioneering framework called FLea, incorporating the following key components.
arXiv Detail & Related papers (2024-06-13T19:28:08Z) - FedAnchor: Enhancing Federated Semi-Supervised Learning with Label
Contrastive Loss for Unlabeled Clients [19.3885479917635]
Federated learning (FL) is a distributed learning paradigm that facilitates collaborative training of a shared global model across devices.
We propose FedAnchor, an innovative FSSL method that introduces a unique double-head structure, called anchor head, paired with the classification head trained exclusively on labeled anchor data on the server.
Our approach mitigates the confirmation bias and overfitting issues associated with pseudo-labeling techniques based on high-confidence model prediction samples.
arXiv Detail & Related papers (2024-02-15T18:48:21Z) - FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-preserving Feature Augmentation [15.298650496155508]
Federated Learning (FL) enables model development by leveraging data distributed across numerous edge devices without transferring local data to a central server.
Existing FL methods face challenges when dealing with scarce and label-skewed data across devices, resulting in local model overfitting and drift.
We propose a pioneering framework called textitFLea, incorporating the following key components.
arXiv Detail & Related papers (2023-12-04T20:24:09Z) - Distinguishability Calibration to In-Context Learning [31.375797763897104]
We propose a method to map a PLM-encoded embedding into a new metric space to guarantee the distinguishability of the resulting embeddings.
We also take the advantage of hyperbolic embeddings to capture the hierarchical relations among fine-grained class-associated token embedding.
arXiv Detail & Related papers (2023-02-13T09:15:00Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
Current methods rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation.
We develop a new adversarial learning based method, which is simple and efficient to apply.
We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin.
arXiv Detail & Related papers (2022-05-12T02:23:25Z) - Text-Based Person Search with Limited Data [66.26504077270356]
Text-based person search (TBPS) aims at retrieving a target person from an image gallery with a descriptive text query.
We present a framework with two novel components to handle the problems brought by limited data.
arXiv Detail & Related papers (2021-10-20T22:20:47Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.