Downstream-Pretext Domain Knowledge Traceback for Active Learning
- URL: http://arxiv.org/abs/2407.14720v1
- Date: Sat, 20 Jul 2024 01:34:13 GMT
- Title: Downstream-Pretext Domain Knowledge Traceback for Active Learning
- Authors: Beichen Zhang, Liang Li, Zheng-Jun Zha, Jiebo Luo, Qingming Huang,
- Abstract summary: We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
- Score: 138.02530777915362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning (AL) is designed to construct a high-quality labeled dataset by iteratively selecting the most informative samples. Such sampling heavily relies on data representation, while recently pre-training is popular for robust feature learning. However, as pre-training utilizes low-level pretext tasks that lack annotation, directly using pre-trained representation in AL is inadequate for determining the sampling score. To address this problem, we propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance for selecting diverse and instructive samples near the decision boundary. DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator. The diversity indicator constructs two feature spaces based on the pre-training pretext model and the downstream knowledge from annotation, by which it locates the neighbors of unlabeled data from the downstream space in the pretext space to explore the interaction of samples. With this mechanism, DOKT unifies the data relations of low-level and high-level representations to estimate traceback diversity. Next, in the uncertainty estimator, domain mixing is designed to enforce perceptual perturbing to unlabeled samples with similar visual patches in the pretext space. Then the divergence of perturbed samples is measured to estimate the domain uncertainty. As a result, DOKT selects the most diverse and important samples based on these two modules. The experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods and generalizes well to various application scenarios such as semantic segmentation and image captioning.
Related papers
- A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - High-order Neighborhoods Know More: HyperGraph Learning Meets Source-free Unsupervised Domain Adaptation [34.08681468394247]
Source-free Unsupervised Domain Adaptation aims to classify target samples by only accessing a pre-trained source model and unlabelled target samples.
Existing methods normally exploit the pair-wise relation among target samples and attempt to discover their correlations by clustering these samples based on semantic features.
We propose a new SFDA method that exploits the high-order neighborhood relation and explicitly takes the domain shift effect into account.
arXiv Detail & Related papers (2024-05-11T05:07:43Z) - Continual Test-time Domain Adaptation via Dynamic Sample Selection [38.82346845855512]
This paper proposes a Dynamic Sample Selection (DSS) method for Continual Test-time Domain Adaptation (CTDA)
We apply joint positive and negative learning on both high- and low-quality samples to reduce the risk of using wrong information.
Our approach is also evaluated in the 3D point cloud domain, showcasing its versatility and potential for broader applicability.
arXiv Detail & Related papers (2023-10-05T06:35:21Z) - Explaining Cross-Domain Recognition with Interpretable Deep Classifier [100.63114424262234]
Interpretable Deep (IDC) learns the nearest source samples of a target sample as evidence upon which the classifier makes the decision.
Our IDC leads to a more explainable model with almost no accuracy degradation and effectively calibrates classification for optimum reject options.
arXiv Detail & Related papers (2022-11-15T15:58:56Z) - Uncertainty in Contrastive Learning: On the Predictability of Downstream
Performance [7.411571833582691]
We study whether the uncertainty of such a representation can be quantified for a single datapoint in a meaningful way.
We show that this goal can be achieved by directly estimating the distribution of the training data in the embedding space.
arXiv Detail & Related papers (2022-07-19T15:44:59Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) aims to determine the sentiment polarity towards an aspect.
There always exists severe domain shift between the pretraining and downstream ABSA datasets.
We introduce a unified alignment pretraining framework into the vanilla pretrain-finetune pipeline.
arXiv Detail & Related papers (2021-10-26T04:03:45Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
This paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition.
We design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space.
Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.
arXiv Detail & Related papers (2021-02-09T03:07:07Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.