3D Object Detection from Point Cloud via Voting Step Diffusion
- URL: http://arxiv.org/abs/2403.14133v1
- Date: Thu, 21 Mar 2024 05:04:52 GMT
- Title: 3D Object Detection from Point Cloud via Voting Step Diffusion
- Authors: Haoran Hou, Mingtao Feng, Zijie Wu, Weisheng Dong, Qing Zhu, Yaonan Wang, Ajmal Mian,
- Abstract summary: existing voting-based methods often receive votes from the partial surfaces of individual objects together with severe noises, leading to sub-optimal detection performance.
We propose a new method to move random 3D points toward the high-density region of the distribution by estimating the score function of the distribution with a noise conditioned score network.
Experiments on two large scale indoor 3D scene datasets, SUN RGB-D and ScanNet V2, demonstrate the superiority of our proposed method.
- Score: 52.9966883689137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection is a fundamental task in scene understanding. Numerous research efforts have been dedicated to better incorporate Hough voting into the 3D object detection pipeline. However, due to the noisy, cluttered, and partial nature of real 3D scans, existing voting-based methods often receive votes from the partial surfaces of individual objects together with severe noises, leading to sub-optimal detection performance. In this work, we focus on the distributional properties of point clouds and formulate the voting process as generating new points in the high-density region of the distribution of object centers. To achieve this, we propose a new method to move random 3D points toward the high-density region of the distribution by estimating the score function of the distribution with a noise conditioned score network. Specifically, we first generate a set of object center proposals to coarsely identify the high-density region of the object center distribution. To estimate the score function, we perturb the generated object center proposals by adding normalized Gaussian noise, and then jointly estimate the score function of all perturbed distributions. Finally, we generate new votes by moving random 3D points to the high-density region of the object center distribution according to the estimated score function. Extensive experiments on two large scale indoor 3D scene datasets, SUN RGB-D and ScanNet V2, demonstrate the superiority of our proposed method. The code will be released at https://github.com/HHrEtvP/DiffVote.
Related papers
- V-DETR: DETR with Vertex Relative Position Encoding for 3D Object
Detection [73.37781484123536]
We introduce a highly performant 3D object detector for point clouds using the DETR framework.
To address the limitation, we introduce a novel 3D Relative Position (3DV-RPE) method.
We show exceptional results on the challenging ScanNetV2 benchmark.
arXiv Detail & Related papers (2023-08-08T17:14:14Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - Surface-biased Multi-Level Context 3D Object Detection [1.9723551683930771]
This work addresses the object detection task in 3D point clouds using a highly efficient, surface-biased, feature extraction method (wang2022rbgnet)
We propose a 3D object detector that extracts accurate feature representations of object candidates and leverages self-attention on point patches, object candidates, and on the global scene in 3D scene.
arXiv Detail & Related papers (2023-02-13T11:50:04Z) - CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds [55.44204039410225]
We present a novel two-stage fully sparse convolutional 3D object detection framework, named CAGroup3D.
Our proposed method first generates some high-quality 3D proposals by leveraging the class-aware local group strategy on the object surface voxels.
To recover the features of missed voxels due to incorrect voxel-wise segmentation, we build a fully sparse convolutional RoI pooling module.
arXiv Detail & Related papers (2022-10-09T13:38:48Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - Shape Prior Non-Uniform Sampling Guided Real-time Stereo 3D Object
Detection [59.765645791588454]
Recently introduced RTS3D builds an efficient 4D Feature-Consistency Embedding space for the intermediate representation of object without depth supervision.
We propose a shape prior non-uniform sampling strategy that performs dense sampling in outer region and sparse sampling in inner region.
Our proposed method has 2.57% improvement on AP3d almost without extra network parameters.
arXiv Detail & Related papers (2021-06-18T09:14:55Z) - Back-tracing Representative Points for Voting-based 3D Object Detection
in Point Clouds [42.24217764222523]
We introduce a new 3D object detection method named as Back-tracing Representative Points Network (BRNet)
BRNet generatively back-traces the representative points from the vote centers and also revisits complementary seed points around these generated points.
Our BRNet is simple but effective, which significantly outperforms the state-of-the-art methods on two large-scale point cloud datasets.
arXiv Detail & Related papers (2021-04-13T11:39:42Z) - Group-Free 3D Object Detection via Transformers [26.040378025818416]
We present a simple yet effective method for directly detecting 3D objects from the 3D point cloud.
Our method computes the feature of an object from all the points in the point cloud with the help of an attention mechanism in the Transformers citevaswaniattention.
With few bells and whistles, the proposed method achieves state-of-the-art 3D object detection performance on two widely used benchmarks, ScanNet V2 and SUN RGB-D.
arXiv Detail & Related papers (2021-04-01T17:59:36Z) - Object-Aware Centroid Voting for Monocular 3D Object Detection [30.59728753059457]
We propose an end-to-end trainable monocular 3D object detector without learning the dense depth.
A novel object-aware voting approach is introduced, which considers both the region-wise appearance attention and the geometric projection distribution.
With the late fusion and the predicted 3D orientation and dimension, the 3D bounding boxes of objects can be detected from a single RGB image.
arXiv Detail & Related papers (2020-07-20T02:11:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.