論文の概要: Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition
- arxiv url: http://arxiv.org/abs/2403.14148v1
- Date: Thu, 21 Mar 2024 05:48:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 15:17:21.793675
- Title: Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition
- Title(参考訳): コンテンツフレーム運動潜時分解による効率的なビデオ拡散モデル
- Authors: Sihyun Yu, Weili Nie, De-An Huang, Boyi Li, Jinwoo Shin, Anima Anandkumar,
- Abstract要約: 本稿では,映像生成のための事前学習画像拡散モデルの拡張として,コンテントモーション潜時拡散モデル(CMD)を提案する。
CMDは、映像を(画像のような)コンテンツフレームと低次元モーションラテント表現の組み合わせとしてエンコードする。
我々は、予め訓練された画像拡散モデルを微調整し、コンテンツフレームを生成し、新しい軽量拡散モデルをトレーニングすることで、動き潜在表現を生成する。
- 参考スコア(独自算出の注目度): 124.41196697408627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video diffusion models have recently made great progress in generation quality, but are still limited by the high memory and computational requirements. This is because current video diffusion models often attempt to process high-dimensional videos directly. To tackle this issue, we propose content-motion latent diffusion model (CMD), a novel efficient extension of pretrained image diffusion models for video generation. Specifically, we propose an autoencoder that succinctly encodes a video as a combination of a content frame (like an image) and a low-dimensional motion latent representation. The former represents the common content, and the latter represents the underlying motion in the video, respectively. We generate the content frame by fine-tuning a pretrained image diffusion model, and we generate the motion latent representation by training a new lightweight diffusion model. A key innovation here is the design of a compact latent space that can directly utilizes a pretrained image diffusion model, which has not been done in previous latent video diffusion models. This leads to considerably better quality generation and reduced computational costs. For instance, CMD can sample a video 7.7$\times$ faster than prior approaches by generating a video of 512$\times$1024 resolution and length 16 in 3.1 seconds. Moreover, CMD achieves an FVD score of 212.7 on WebVid-10M, 27.3% better than the previous state-of-the-art of 292.4.
- Abstract(参考訳): ビデオ拡散モデルは、最近、生成品質を著しく向上させたが、依然として高いメモリと計算要求によって制限されている。
これは、現在のビデオ拡散モデルは、しばしば高次元ビデオを直接処理しようとするためである。
この問題に対処するために、ビデオ生成のための事前学習画像拡散モデルの新たな効率的な拡張であるコンテンツモーション潜在拡散モデル(CMD)を提案する。
具体的には、映像を(画像のような)コンテンツフレームと低次元動作遅延表現の組み合わせとして簡潔に符号化するオートエンコーダを提案する。
前者は共通の内容を表し、後者は動画の下位の動きを表す。
我々は、予め訓練された画像拡散モデルを微調整し、コンテンツフレームを生成し、新しい軽量拡散モデルをトレーニングすることで、動き潜在表現を生成する。
ここでの重要な革新は、事前訓練された画像拡散モデルを直接利用できるコンパクトな潜伏空間の設計である。
これにより、品質が大幅に向上し、計算コストが削減される。
例えば、CMDは512$\times$1024の解像度と長さ16を3.1秒で生成することで、以前のアプローチよりも速い7.7$\times$のビデオをサンプリングすることができる。
さらに、CMDはWebVid-10MでFVDスコアが212.7、以前の292.4よりも27.3%向上している。
関連論文リスト
- REDUCIO! Generating 1024$\times$1024 Video within 16 Seconds using Extremely Compressed Motion Latents [110.41795676048835]
大規模アプリケーションにとって重要な障害のひとつは、高価なトレーニングと推論コストである。
本稿では,ビデオには画像よりもはるかに冗長な情報が含まれており,非常に少ない動きの潜伏者によってエンコード可能であることを論じる。
我々は、合計3.2Kのトレーニング時間でReduceio-DiTをトレーニングし、1つのA100 GPUで15.5秒以内に16フレームの1024*1024ビデオクリップを生成する。
論文 参考訳(メタデータ) (2024-11-20T18:59:52Z) - Photorealistic Video Generation with Diffusion Models [44.95407324724976]
W.A.L.T.は拡散モデリングによるビデオ生成のためのトランスフォーマーベースのアプローチである。
我々は因果エンコーダを用いて、統一された潜在空間内で画像とビデオを共同で圧縮し、モダリティ間のトレーニングと生成を可能にする。
また,基本潜時ビデオ拡散モデルと2つのビデオ超解像拡散モデルからなるテキスト・ビデオ生成タスクのための3つのモデルのカスケードをトレーニングし,毎秒8ドルフレームで512倍の解像度の動画を生成する。
論文 参考訳(メタデータ) (2023-12-11T18:59:57Z) - Align your Latents: High-Resolution Video Synthesis with Latent
Diffusion Models [71.11425812806431]
遅延拡散モデル(LDM)は、過剰な計算要求を回避しながら高品質な画像合成を可能にする。
本稿では, LDMパラダイムを高分解能な生成, 特に資源集約的なタスクに適用する。
そこで本研究では,テキスト・ツー・ビデオ・モデリングによる実世界のシミュレーションとクリエイティブ・コンテンツ作成の2つの応用に焦点をあてる。
論文 参考訳(メタデータ) (2023-04-18T08:30:32Z) - Latent Video Diffusion Models for High-Fidelity Long Video Generation [58.346702410885236]
低次元ラテント空間を用いた軽量映像拡散モデルを提案する。
また,1000フレーム以上の長編動画を生成できるように,遅延空間における階層的拡散も提案する。
我々のフレームワークは、以前の強力なベースラインよりもリアルで長いビデオを生成する。
論文 参考訳(メタデータ) (2022-11-23T18:58:39Z) - MagicVideo: Efficient Video Generation With Latent Diffusion Models [76.95903791630624]
我々はMagicVideoと呼ばれる遅延拡散モデルに基づく効率的なテキスト・ビデオ生成フレームワークを提案する。
低次元空間における映像の配布をモデル化する新しい3次元U-Netの設計により、MagicVideoは1枚のGPUカード上で256×256の空間解像度でビデオクリップを合成できる。
我々は広範な実験を行い、MagicVideoが現実的または虚構的なコンテンツで高品質なビデオクリップを作成できることを実証した。
論文 参考訳(メタデータ) (2022-11-20T16:40:31Z) - Video Diffusion Models [47.99413440461512]
時間的コヒーレントな高忠実度ビデオの生成は、生成モデリング研究において重要なマイルストーンである。
本稿では,ビデオ生成のための拡散モデルを提案する。
そこで本研究では,テキスト条件付きビデオ生成タスクにおける最初の結果と,未条件のビデオ生成ベンチマークにおける最新結果について述べる。
論文 参考訳(メタデータ) (2022-04-07T14:08:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。