論文の概要: Improving the Robustness of Large Language Models via Consistency Alignment
- arxiv url: http://arxiv.org/abs/2403.14221v1
- Date: Thu, 21 Mar 2024 08:21:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 15:07:37.447408
- Title: Improving the Robustness of Large Language Models via Consistency Alignment
- Title(参考訳): 一貫性アライメントによる大規模言語モデルのロバスト性向上
- Authors: Zhao Yukun, Yan Lingyong, Sun Weiwei, Xing Guoliang, Wang Shuaiqiang, Meng Chong, Cheng Zhicong, Ren Zhaochun, Yin Dawei,
- Abstract要約: 大規模言語モデル(LLM)は、ユーザ命令に従い、有用な応答を生成することで大きな成功を収めている。
LLMは、言語化された命令の微妙な変化により、非常に矛盾した応答を生成する。
本稿では,教師付き微調整と整合性調整を併用した2段階のトレーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models (LLMs) have shown tremendous success in following user instructions and generating helpful responses. Nevertheless, their robustness is still far from optimal, as they may generate significantly inconsistent responses due to minor changes in the verbalized instructions. Recent literature has explored this inconsistency issue, highlighting the importance of continued improvement in the robustness of response generation. However, systematic analysis and solutions are still lacking. In this paper, we quantitatively define the inconsistency problem and propose a two-stage training framework consisting of instruction-augmented supervised fine-tuning and consistency alignment training. The first stage helps a model generalize on following instructions via similar instruction augmentations. In the second stage, we improve the diversity and help the model understand which responses are more aligned with human expectations by differentiating subtle differences in similar responses. The training process is accomplished by self-rewards inferred from the trained model at the first stage without referring to external human preference resources. We conduct extensive experiments on recent publicly available LLMs on instruction-following tasks and demonstrate the effectiveness of our training framework.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ユーザ命令に従い、有用な応答を生成することで大きな成功を収めている。
それでも、その頑健さは、言語化された指示の微妙な変化により、非常に矛盾する応答を生じる可能性があるため、まだ最適には程遠い。
近年の文献では、この不整合問題を探求し、応答生成の堅牢性に対する継続的な改善の重要性を強調している。
しかし、体系的な分析と解決策はまだ不足している。
本稿では,不整合問題を定量的に定義し,インストラクション強化された教師付き微調整と整合性アライメントトレーニングからなる2段階のトレーニングフレームワークを提案する。
第1段階は、モデルが同様の命令拡張を通じて次の命令を一般化するのを手助けする。
第2段階では、多様性を改善し、類似した反応の微妙な違いを区別することにより、どの反応が人間の期待に合致しているかをモデルが理解できるようにする。
トレーニングプロセスは、外部の人間の嗜好資源を参照することなく、トレーニングされたモデルから第一段階で推論された自己回帰によって達成される。
我々は、最近公開されているLLMの指導追従タスクに関する広範な実験を行い、トレーニングフレームワークの有効性を実証した。
関連論文リスト
- Learning-to-Defer for Extractive Question Answering [3.6787328174619254]
質問応答の文脈で言語モデルを再訓練することなく、人間の専門家や大規模モデルへの選択的推論を可能にすることにより、意思決定を強化する2段階の学習・判断機構を適応的に導入する。
その結果,最小限のクエリを遅延させることで,計算効率を保ちながら,より大規模なクエリに匹敵する性能を実現することができた。
論文 参考訳(メタデータ) (2024-10-21T08:21:00Z) - Recursive Introspection: Teaching Language Model Agents How to Self-Improve [30.086494067593268]
RISE: Recursive IntroSpEctionは,大規模言語モデルを微調整する手法である。
実験の結果,RISEはLlama2,Llama3,Mistralの各モデルに対して,数学推論タスクのターン数を増やすことで自己改善を可能にすることがわかった。
論文 参考訳(メタデータ) (2024-07-25T17:35:59Z) - Progress or Regress? Self-Improvement Reversal in Post-training [26.051637877066327]
本稿では,自己改善のためのポストトレーニングパラダイムの根底にある拡張を精査する包括的評価フレームワークを提案する。
ベンチマークで改善されたパフォーマンスを示すモデルは、パラドックス的により広範で必須の能力の低下を示す。
これらの結果から, ポストトレーニングによる現在の自己改善実践は, より複雑な問題に対処するためのモデルの装備に不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-07-06T09:07:11Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
本稿では,教師が指導するプログレッシブ・ラーニング・フレームワークであるYodaを紹介する。
モデルファインチューニングの有効性を向上させるために,教師の教育過程をエミュレートする。
実験の結果, YODAのデータによるLLaMA2のトレーニングにより, SFTは大幅に向上した。
論文 参考訳(メタデータ) (2024-01-28T14:32:15Z) - SAIE Framework: Support Alone Isn't Enough -- Advancing LLM Training
with Adversarial Remarks [47.609417223514605]
この研究は、学習者とパートナーモデルの間の支援的および敵対的な議論を促進するSAIEフレームワークを紹介している。
実験により,SAIEフレームワークで微調整したモデルでは,従来の微調整手法で訓練したモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-14T12:12:25Z) - Instruction-following Evaluation through Verbalizer Manipulation [64.73188776428799]
本稿では,動詞操作と呼ばれる新しい指示追従評価プロトコルを提案する。
モデルにタスクラベルを、異なる範囲のモデル先行と整合した単語で言語化するように指示する。
異なる家族や規模にわたるモデルの指示追従能力は、より自然な話し手の性能によって著しく異なることが観察された。
論文 参考訳(メタデータ) (2023-07-20T03:54:24Z) - Entailment as Robust Self-Learner [14.86757876218415]
我々は、複数の異なるNLUタスクを文脈的エンターテイメントとして定式化するプロンプト戦略を設計する。
自己学習における擬似ラベル品質向上のための簡易擬似ラベル編集(SimPLE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-26T18:41:23Z) - Fairness-guided Few-shot Prompting for Large Language Models [93.05624064699965]
インコンテキスト学習は、トレーニング例、例えば順、プロンプトフォーマットのバリエーションによって、高い不安定性に悩まされる可能性がある。
ラベルや属性に対する固定的なプロンプトの予測バイアスを評価するための指標を導入する。
そこで本研究では,テキスト内学習の性能向上のための最寄りのプロンプトを特定するための,欲求探索に基づく新しい探索手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T12:28:25Z) - Self-Paced Learning for Neural Machine Translation [55.41314278859938]
ニューラルネットワーク翻訳(NMT)訓練のためのセルフペースト学習を提案する。
提案モデルでは,強いベースラインよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-10-09T11:33:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。