Large-Scale Label Interpretation Learning for Few-Shot Named Entity Recognition
- URL: http://arxiv.org/abs/2403.14222v1
- Date: Thu, 21 Mar 2024 08:22:44 GMT
- Title: Large-Scale Label Interpretation Learning for Few-Shot Named Entity Recognition
- Authors: Jonas Golde, Felix Hamborg, Alan Akbik,
- Abstract summary: Few-shot named entity recognition (NER) detects named entities within text using only a few examples.
One promising line of research is to leverage natural language descriptions of each entity type.
In this paper, we explore the impact of a strong semantic prior to interpret verbalizations of new entity types.
- Score: 5.262708162539423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot named entity recognition (NER) detects named entities within text using only a few annotated examples. One promising line of research is to leverage natural language descriptions of each entity type: the common label PER might, for example, be verbalized as ''person entity.'' In an initial label interpretation learning phase, the model learns to interpret such verbalized descriptions of entity types. In a subsequent few-shot tagset extension phase, this model is then given a description of a previously unseen entity type (such as ''music album'') and optionally a few training examples to perform few-shot NER for this type. In this paper, we systematically explore the impact of a strong semantic prior to interpret verbalizations of new entity types by massively scaling up the number and granularity of entity types used for label interpretation learning. To this end, we leverage an entity linking benchmark to create a dataset with orders of magnitude of more distinct entity types and descriptions as currently used datasets. We find that this increased signal yields strong results in zero- and few-shot NER in in-domain, cross-domain, and even cross-lingual settings. Our findings indicate significant potential for improving few-shot NER through heuristical data-based optimization.
Related papers
- Evaluating Named Entity Recognition Using Few-Shot Prompting with Large Language Models [0.0]
Few-Shot Prompting or in-context learning enables models to recognize entities with minimal examples.
We assess state-of-the-art models like GPT-4 in NER tasks, comparing their few-shot performance to fully supervised benchmarks.
arXiv Detail & Related papers (2024-08-28T13:42:28Z) - Seed-Guided Fine-Grained Entity Typing in Science and Engineering
Domains [51.02035914828596]
We study the task of seed-guided fine-grained entity typing in science and engineering domains.
We propose SEType which first enriches the weak supervision by finding more entities for each seen type from an unlabeled corpus.
It then matches the enriched entities to unlabeled text to get pseudo-labeled samples and trains a textual entailment model that can make inferences for both seen and unseen types.
arXiv Detail & Related papers (2024-01-23T22:36:03Z) - PromptNER: A Prompting Method for Few-shot Named Entity Recognition via
k Nearest Neighbor Search [56.81939214465558]
We propose PromptNER: a novel prompting method for few-shot NER via k nearest neighbor search.
We use prompts that contains entity category information to construct label prototypes, which enables our model to fine-tune with only the support set.
Our approach achieves excellent transfer learning ability, and extensive experiments on the Few-NERD and CrossNER datasets demonstrate that our model achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2023-05-20T15:47:59Z) - Disambiguation of Company names via Deep Recurrent Networks [101.90357454833845]
We propose a Siamese LSTM Network approach to extract -- via supervised learning -- an embedding of company name strings.
We analyse how an Active Learning approach to prioritise the samples to be labelled leads to a more efficient overall learning pipeline.
arXiv Detail & Related papers (2023-03-07T15:07:57Z) - Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation
and Instance Generation [36.541309948222306]
We study the problem of few-shot Fine-grained Entity Typing (FET), where only a few annotated entity mentions with contexts are given for each entity type.
We propose a novel framework for few-shot FET consisting of two modules: (1) an entity type label interpretation module automatically learns to relate type labels to the vocabulary by jointly leveraging few-shot instances and the label hierarchy, and (2) a type-based contextualized instance generator produces new instances based on given instances to enlarge the training set for better generalization.
arXiv Detail & Related papers (2022-06-28T04:05:40Z) - A Realistic Study of Auto-regressive Language Models for Named Entity
Typing and Recognition [7.345578385749421]
We study pre-trained language models for named entity recognition in a meta-learning setup.
First, we test named entity typing (NET) in a zero-shot transfer scenario. Then, we perform NER by giving few examples at inference.
We propose a method to select seen and rare / unseen names when having access only to the pre-trained model and report results on these groups.
arXiv Detail & Related papers (2021-08-26T15:29:00Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
This paper aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data.
We learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations.
Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art relational models.
arXiv Detail & Related papers (2021-03-22T08:11:43Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
We present an approach to creating entity representations that are human readable and achieve high performance out of the box.
Our representations are vectors whose values correspond to posterior probabilities over fine-grained entity types.
We show that it is possible to reduce the size of our type set in a learning-based way for particular domains.
arXiv Detail & Related papers (2020-04-30T23:58:03Z) - Interpretability Analysis for Named Entity Recognition to Understand
System Predictions and How They Can Improve [49.878051587667244]
We examine the performance of several variants of LSTM-CRF architectures for named entity recognition.
We find that context representations do contribute to system performance, but that the main factor driving high performance is learning the name tokens themselves.
We enlist human annotators to evaluate the feasibility of inferring entity types from the context alone and find that, while people are not able to infer the entity type either for the majority of the errors made by the context-only system, there is some room for improvement.
arXiv Detail & Related papers (2020-04-09T14:37:12Z) - Fine-Grained Named Entity Typing over Distantly Supervised Data Based on
Refined Representations [16.30478830298353]
Fine-Grained Named Entity Typing (FG-NET) is a key component in Natural Language Processing (NLP)
We propose an edge-weighted attentive graph convolution network that refines the noisy mention representations by attending over corpus-level contextual clues prior to the end classification.
Experimental evaluation shows that the proposed model outperforms the existing research by a relative score of upto 10.2% and 8.3% for macro f1 and micro f1 respectively.
arXiv Detail & Related papers (2020-04-07T17:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.