Evaluating Named Entity Recognition Using Few-Shot Prompting with Large Language Models
- URL: http://arxiv.org/abs/2408.15796v2
- Date: Wed, 4 Sep 2024 06:36:22 GMT
- Title: Evaluating Named Entity Recognition Using Few-Shot Prompting with Large Language Models
- Authors: Hédi Zeghidi, Ludovic Moncla,
- Abstract summary: Few-Shot Prompting or in-context learning enables models to recognize entities with minimal examples.
We assess state-of-the-art models like GPT-4 in NER tasks, comparing their few-shot performance to fully supervised benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper evaluates Few-Shot Prompting with Large Language Models for Named Entity Recognition (NER). Traditional NER systems rely on extensive labeled datasets, which are costly and time-consuming to obtain. Few-Shot Prompting or in-context learning enables models to recognize entities with minimal examples. We assess state-of-the-art models like GPT-4 in NER tasks, comparing their few-shot performance to fully supervised benchmarks. Results show that while there is a performance gap, large models excel in adapting to new entity types and domains with very limited data. We also explore the effects of prompt engineering, guided output format and context length on performance. This study underscores Few-Shot Learning's potential to reduce the need for large labeled datasets, enhancing NER scalability and accessibility.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Retrieval-Enhanced Named Entity Recognition [1.2187048691454239]
RENER is a technique for named entity recognition using autoregressive language models based on In-Context Learning and information retrieval techniques.
Experimental results show that in the CrossNER collection we achieve state-of-the-art performance with the proposed technique.
arXiv Detail & Related papers (2024-10-17T01:12:48Z) - In-Context Learning for Few-Shot Nested Named Entity Recognition [53.55310639969833]
We introduce an effective and innovative ICL framework for the setting of few-shot nested NER.
We improve the ICL prompt by devising a novel example demonstration selection mechanism, EnDe retriever.
In EnDe retriever, we employ contrastive learning to perform three types of representation learning, in terms of semantic similarity, boundary similarity, and label similarity.
arXiv Detail & Related papers (2024-02-02T06:57:53Z) - EvEntS ReaLM: Event Reasoning of Entity States via Language Models [24.077262847151232]
Nominally, Large Language models (LLM) have been exposed to procedural knowledge about how objects interact, yet our benchmarking shows they fail to reason about the world.
In particular, our results indicate that our prompting technique is especially useful for unseen attributes (out-of-domain) or when only limited data is available.
arXiv Detail & Related papers (2022-11-10T07:48:01Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NER model has achieved promising performance on standard NER benchmarks.
Recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary (OOV) entity recognition.
We propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective.
arXiv Detail & Related papers (2022-04-09T05:18:20Z) - On the Use of External Data for Spoken Named Entity Recognition [40.93448412171246]
Recent advances in self-supervised speech representations have made it feasible to consider learning models with limited labeled data.
We draw on a variety of approaches, including self-training, knowledge distillation, and transfer learning, and consider their applicability to both end-to-end models and pipeline approaches.
arXiv Detail & Related papers (2021-12-14T18:49:26Z) - NER-BERT: A Pre-trained Model for Low-Resource Entity Tagging [40.57720568571513]
We construct a massive NER corpus with a relatively high quality, and we pre-train a NER-BERT model based on the created dataset.
Experimental results show that our pre-trained model can significantly outperform BERT as well as other strong baselines in low-resource scenarios.
arXiv Detail & Related papers (2021-12-01T10:45:02Z) - Focusing on Potential Named Entities During Active Label Acquisition [0.0]
Named entity recognition (NER) aims to identify mentions of named entities in an unstructured text.
Many domain-specific NER applications still call for a substantial amount of labeled data.
We propose a better data-driven normalization approach to penalize sentences that are too long or too short.
arXiv Detail & Related papers (2021-11-06T09:04:16Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
We present an approach to creating entity representations that are human readable and achieve high performance out of the box.
Our representations are vectors whose values correspond to posterior probabilities over fine-grained entity types.
We show that it is possible to reduce the size of our type set in a learning-based way for particular domains.
arXiv Detail & Related papers (2020-04-30T23:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.