Recovering Latent Confounders from High-dimensional Proxy Variables
- URL: http://arxiv.org/abs/2403.14228v1
- Date: Thu, 21 Mar 2024 08:39:13 GMT
- Title: Recovering Latent Confounders from High-dimensional Proxy Variables
- Authors: Nathan Mankovich, Homer Durand, Emiliano Diaz, Gherardo Varando, Gustau Camps-Valls,
- Abstract summary: We present a novel Proxy Confounder Factorization (PCF) framework for continuous treatment effect estimation.
For specific sample sizes, our two-step PCF implementation, using Independent Component Analysis (ICA-PCF), and the end-to-end implementation, using Gradient Descent (GD-PCF), achieve high correlation with the latent confounder.
Even when faced with climate data, ICA-PCF recovers four components that explain $75.9% of the variance in the North Atlantic Oscillation.
- Score: 4.273372609646382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting latent confounders from proxy variables is an essential problem in causal effect estimation. Previous approaches are limited to low-dimensional proxies, sorted proxies, and binary treatments. We remove these assumptions and present a novel Proxy Confounder Factorization (PCF) framework for continuous treatment effect estimation when latent confounders manifest through high-dimensional, mixed proxy variables. For specific sample sizes, our two-step PCF implementation, using Independent Component Analysis (ICA-PCF), and the end-to-end implementation, using Gradient Descent (GD-PCF), achieve high correlation with the latent confounder and low absolute error in causal effect estimation with synthetic datasets in the high sample size regime. Even when faced with climate data, ICA-PCF recovers four components that explain $75.9\%$ of the variance in the North Atlantic Oscillation, a known confounder of precipitation patterns in Europe. Code for our PCF implementations and experiments can be found here: https://github.com/IPL-UV/confound_it. The proposed methodology constitutes a stepping stone towards discovering latent confounders and can be applied to many problems in disciplines dealing with high-dimensional observed proxies, e.g., spatiotemporal fields.
Related papers
- Estimation and Inference for Causal Functions with Multiway Clustered Data [6.988496457312806]
This paper proposes methods of estimation and uniform inference for a general class of causal functions.
The causal function is identified as a conditional expectation of an adjusted (Neyman-orthogonal) signal.
We apply the proposed methods to analyze the causal relationship between levels in Africa and the historical slave trade.
arXiv Detail & Related papers (2024-09-10T17:17:53Z) - Automating the Selection of Proxy Variables of Unmeasured Confounders [16.773841751009748]
We extend the existing proxy variable estimator to accommodate scenarios where multiple unmeasured confounders exist between the treatments and the outcome.
We propose two data-driven methods for the selection of proxy variables and for the unbiased estimation of causal effects.
arXiv Detail & Related papers (2024-05-25T08:53:49Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Inferring Dynamic Networks from Marginals with Iterative Proportional Fitting [57.487936697747024]
A common network inference problem, arising from real-world data constraints, is how to infer a dynamic network from its time-aggregated adjacency matrix.
We introduce a principled algorithm that guarantees IPF converges under minimal changes to the network structure.
arXiv Detail & Related papers (2024-02-28T20:24:56Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Kernel Single Proxy Control for Deterministic Confounding [32.70182383946395]
We show that a single proxy variable is sufficient for causal estimation if the outcome is generated deterministically.
We prove and empirically demonstrate that we can successfully recover the causal effect on challenging synthetic benchmarks.
arXiv Detail & Related papers (2023-08-08T21:11:06Z) - Mixed Precision Quantization to Tackle Gradient Leakage Attacks in
Federated Learning [1.7205106391379026]
Federated Learning (FL) enables collaborative model building among a large number of participants without the need for explicit data sharing.
This approach shows vulnerabilities when privacy inference attacks are applied to it.
In particular, in the event of a gradient leakage attack, which has a higher success rate in retrieving sensitive data from the model gradients, FL models are at higher risk due to the presence of communication in their inherent architecture.
arXiv Detail & Related papers (2022-10-22T04:24:32Z) - Sample Complexity of Nonparametric Off-Policy Evaluation on
Low-Dimensional Manifolds using Deep Networks [71.95722100511627]
We consider the off-policy evaluation problem of reinforcement learning using deep neural networks.
We show that, by choosing network size appropriately, one can leverage the low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2022-06-06T20:25:20Z) - Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation [26.47311758786421]
Proxy causal learning (PCL) is a method for estimating the causal effect of treatments on outcomes in the presence of unobserved confounding.
We propose a novel method for PCL, the deep feature proxy variable method (DFPV), to address the case where the proxies, treatments, and outcomes are high-dimensional and have nonlinear complex relationships.
arXiv Detail & Related papers (2021-06-07T18:36:13Z) - LSDAT: Low-Rank and Sparse Decomposition for Decision-based Adversarial
Attack [74.5144793386864]
LSDAT crafts perturbations in the low-dimensional subspace formed by the sparse component of the input sample and that of an adversarial sample.
LSD works directly in the image pixel domain to guarantee that non-$ell$ constraints, such as sparsity, are satisfied.
arXiv Detail & Related papers (2021-03-19T13:10:47Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
This research project focuses on the use of autoencoders networks to construct a continuous parameterization for facies models.
We benchmark seven different formulations, including VAE, generative adversarial network (GAN), Wasserstein GAN, variational auto-encoding GAN, principal component analysis (PCA) with cycle GAN, PCA with transfer style network and VAE with style loss.
arXiv Detail & Related papers (2020-05-08T21:32:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.