LLM-based Extraction of Contradictions from Patents
- URL: http://arxiv.org/abs/2403.14258v1
- Date: Thu, 21 Mar 2024 09:36:36 GMT
- Title: LLM-based Extraction of Contradictions from Patents
- Authors: Stefan Trapp, Joachim Warschat,
- Abstract summary: This paper goes one step further, as it presents a method to extract TRIZ contradictions from patent texts based on Prompt Engineering.
Our results show that "off-the-shelf" GPT-4 is a serious alternative to existing approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Already since the 1950s TRIZ shows that patents and the technical contradictions they solve are an important source of inspiration for the development of innovative products. However, TRIZ is a heuristic based on a historic patent analysis and does not make use of the ever-increasing number of latest technological solutions in current patents. Because of the huge number of patents, their length, and, last but not least, their complexity there is a need for modern patent retrieval and patent analysis to go beyond keyword-oriented methods. Recent advances in patent retrieval and analysis mainly focus on dense vectors based on neural AI Transformer language models like Google BERT. They are, for example, used for dense retrieval, question answering or summarization and key concept extraction. A research focus within the methods for patent summarization and key concept extraction are generic inventive concepts respectively TRIZ concepts like problems, solutions, advantage of invention, parameters, and contradictions. Succeeding rule-based approaches, finetuned BERT-like language models for sentence-wise classification represent the state-of-the-art of inventive concept extraction. While they work comparatively well for basic concepts like problems or solutions, contradictions - as a more complex abstraction - remain a challenge for these models. This paper goes one step further, as it presents a method to extract TRIZ contradictions from patent texts based on Prompt Engineering using a generative Large Language Model (LLM), namely OpenAI's GPT-4. Contradiction detection, sentence extraction, contradiction summarization, parameter extraction and assignment to the 39 abstract TRIZ engineering parameters are all performed in a single prompt using the LangChain framework. Our results show that "off-the-shelf" GPT-4 is a serious alternative to existing approaches.
Related papers
- BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression [91.23933111083389]
BRIEF (Bridging Retrieval and Inference through Evidence Fusion) is a lightweight approach that performs query-aware multi-hop reasoning.
Based on our synthetic data built entirely by open-source models, BRIEF generates more concise summaries.
arXiv Detail & Related papers (2024-10-20T04:24:16Z) - Pap2Pat: Towards Automated Paper-to-Patent Drafting using Chunk-based Outline-guided Generation [13.242188189150987]
We present PAP2PAT, a new challenging benchmark of 1.8k patent-paper pairs with document outlines.
Our experiments with current open-weight LLMs and outline-guided generation show that they can effectively use information from the paper but struggle with repetitions, likely due to the inherent repetitiveness of patent language.
arXiv Detail & Related papers (2024-10-09T15:52:48Z) - SparseCL: Sparse Contrastive Learning for Contradiction Retrieval [87.02936971689817]
Contradiction retrieval refers to identifying and extracting documents that explicitly disagree with or refute the content of a query.
Existing methods such as similarity search and crossencoder models exhibit significant limitations.
We introduce SparseCL that leverages specially trained sentence embeddings designed to preserve subtle, contradictory nuances between sentences.
arXiv Detail & Related papers (2024-06-15T21:57:03Z) - Natural Language Processing in Patents: A Survey [0.0]
Patents, encapsulating crucial technical and legal information, present a rich domain for natural language processing (NLP) applications.
As NLP technologies evolve, large language models (LLMs) have demonstrated outstanding capabilities in general text processing and generation tasks.
This paper aims to equip NLP researchers with the essential knowledge to navigate this complex domain efficiently.
arXiv Detail & Related papers (2024-03-06T23:17:16Z) - PaECTER: Patent-level Representation Learning using Citation-informed
Transformers [0.16785092703248325]
PaECTER is a publicly available, open-source document-level encoder specific for patents.
We fine-tune BERT for Patents with examiner-added citation information to generate numerical representations for patent documents.
PaECTER performs better in similarity tasks than current state-of-the-art models used in the patent domain.
arXiv Detail & Related papers (2024-02-29T18:09:03Z) - Large Language Models as an Indirect Reasoner: Contrapositive and
Contradiction for Automated Reasoning [79.37150041259066]
This paper proposes a novel Indirect Reasoning (IR) method that employs the logic of contrapositives and contradictions to tackle IR tasks such as factual reasoning and mathematic proof.
The experimental results on popular LLMs, such as GPT-3.5-turbo and Gemini-pro, show that our IR method enhances the overall accuracy of factual reasoning by 27.33% and mathematical proof by 31.43%.
arXiv Detail & Related papers (2024-02-06T03:41:12Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
State-of-the-art methods for multi-label patent classification rely on deep opaque neural networks (DNNs)
We propose a novel deep explainable patent classification framework by introducing layer-wise relevance propagation (LRP)
Considering the relevance score, we then generate explanations by visualizing relevant words for the predicted patent class.
arXiv Detail & Related papers (2023-10-31T14:11:37Z) - TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative
Language Models [68.65075559137608]
We propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proofs but also evaluates a generative LM's reasoning ability on formulas.
We gather trigonometric expressions and their reduced forms from the web, annotate the simplification process manually, and translate it into the Lean formal language system.
We develop an automatic generator based on Lean-Gym to create dataset splits of varying difficulties and distributions in order to thoroughly analyze the model's generalization ability.
arXiv Detail & Related papers (2023-10-16T08:42:39Z) - HyPoradise: An Open Baseline for Generative Speech Recognition with
Large Language Models [81.56455625624041]
We introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction.
The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses.
LLMs with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list.
arXiv Detail & Related papers (2023-09-27T14:44:10Z) - The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and
Multi-Purpose Corpus of Patent Applications [8.110699646062384]
We introduce the Harvard USPTO Patent dataset (HUPD)
With more than 4.5 million patent documents, HUPD is two to three times larger than comparable corpora.
By providing each application's metadata along with all of its text fields, the dataset enables researchers to perform new sets of NLP tasks.
arXiv Detail & Related papers (2022-07-08T17:57:15Z) - Patent Sentiment Analysis to Highlight Patent Paragraphs [0.0]
Given a patent document, identifying distinct semantic annotations is an interesting research aspect.
In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice.
This work assist patent practitioners in highlighting semantic information automatically and aid to create a sustainable and efficient patent analysis using the aptitude of Machine Learning.
arXiv Detail & Related papers (2021-11-06T13:28:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.