Diffusion Models with Ensembled Structure-Based Anomaly Scoring for Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2403.14262v1
- Date: Thu, 21 Mar 2024 09:50:39 GMT
- Title: Diffusion Models with Ensembled Structure-Based Anomaly Scoring for Unsupervised Anomaly Detection
- Authors: Finn Behrendt, Debayan Bhattacharya, Lennart Maack, Julia Krüger, Roland Opfer, Robin Mieling, Alexander Schlaefer,
- Abstract summary: unsupervised anomaly detection (UAD) emerges as a viable alternative for pathology segmentation.
Recent UAD anomaly scoring functions often focus on intensity only and neglect structural differences, which impedes the segmentation performance.
Structural Similarity (SSIM) captures both intensity and structural disparities and can be advantageous over the classical $l1$ error.
- Score: 35.46541584018842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised deep learning techniques show promise in medical image analysis. However, they require comprehensive annotated data sets, which poses challenges, particularly for rare diseases. Consequently, unsupervised anomaly detection (UAD) emerges as a viable alternative for pathology segmentation, as only healthy data is required for training. However, recent UAD anomaly scoring functions often focus on intensity only and neglect structural differences, which impedes the segmentation performance. This work investigates the potential of Structural Similarity (SSIM) to bridge this gap. SSIM captures both intensity and structural disparities and can be advantageous over the classical $l1$ error. However, we show that there is more than one optimal kernel size for the SSIM calculation for different pathologies. Therefore, we investigate an adaptive ensembling strategy for various kernel sizes to offer a more pathology-agnostic scoring mechanism. We demonstrate that this ensembling strategy can enhance the performance of DMs and mitigate the sensitivity to different kernel sizes across varying pathologies, highlighting its promise for brain MRI anomaly detection.
Related papers
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
Existing AI-generated image (AIGI) detection methods often suffer from limited generalization performance.
In this paper, we identify a crucial yet previously overlooked asymmetry phenomenon in AIGI detection.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Multiple Instance Ensembling For Paranasal Anomaly Classification In The
Maxillary Sinus [46.1292414445895]
Paranasal anomalies can present with a wide range of morphological features.
Current approaches to paranasal anomaly classification are constrained to identifying a single anomaly at a time.
We investigate the feasibility of using a 3D convolutional neural network (CNN) to classify healthy maxillary (MS) and MS with polyps or cysts.
arXiv Detail & Related papers (2023-03-31T09:23:27Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - A Global and Patch-wise Contrastive Loss for Accurate Automated Exudate
Detection [12.669734891001667]
Diabetic retinopathy (DR) is a leading global cause of blindness.
Early detection of hard exudates plays a crucial role in identifying DR, which aids in treating diabetes and preventing vision loss.
We present a novel supervised contrastive learning framework to optimize hard exudate segmentation.
arXiv Detail & Related papers (2023-02-22T17:39:00Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
The performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information.
We present the Max-Fusion U-Net that achieves improved pathology segmentation performance.
We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset.
arXiv Detail & Related papers (2020-09-05T17:24:23Z) - Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A
Comparative Study [43.26668942258135]
New approaches in the field of Unsupervised Anomaly Detection (UAD) in brain MRI.
Main principle behind these works is to learn a model of normal anatomy by learning to compress and recover healthy data.
concept is of great interest to the medical image analysis community as it i) relieves from the need of vast amounts of manually segmented training data.
arXiv Detail & Related papers (2020-04-07T11:12:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.