論文の概要: Assessing the Robustness of Spectral Clustering for Deep Speaker Diarization
- arxiv url: http://arxiv.org/abs/2403.14286v1
- Date: Thu, 21 Mar 2024 10:49:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 14:48:00.527766
- Title: Assessing the Robustness of Spectral Clustering for Deep Speaker Diarization
- Title(参考訳): ディープスピーカダイアリゼーションのためのスペクトルクラスタリングのロバスト性の評価
- Authors: Nikhil Raghav, Md Sahidullah,
- Abstract要約: 本研究は,同領域話者ダイアリゼーションとクロスドメイン話者ダイアリゼーションの両方に対するスペクトルクラスタリングについて,徹底的に検討する。
2つの異なる領域条件間の性能差がスペクトルクラスタリングの役割に起因することが観察された。
- 参考スコア(独自算出の注目度): 7.052822052763606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering speaker embeddings is crucial in speaker diarization but hasn't received as much focus as other components. Moreover, the robustness of speaker diarization across various datasets hasn't been explored when the development and evaluation data are from different domains. To bridge this gap, this study thoroughly examines spectral clustering for both same-domain and cross-domain speaker diarization. Our extensive experiments on two widely used corpora, AMI and DIHARD, reveal the performance trend of speaker diarization in the presence of domain mismatch. We observe that the performance difference between two different domain conditions can be attributed to the role of spectral clustering. In particular, keeping other modules unchanged, we show that differences in optimal tuning parameters as well as speaker count estimation originates due to the mismatch. This study opens several future directions for speaker diarization research.
- Abstract(参考訳): 話者埋め込みのクラスタ化は話者ダイアリゼーションにおいて重要であるが、他のコンポーネントほど注目されていない。
さらに、様々なデータセットにわたる話者ダイアリゼーションのロバスト性は、開発および評価データが異なるドメインからのものである場合に検討されていない。
このギャップを埋めるために、同領域話者ダイアリゼーションとクロスドメイン話者ダイアリゼーションの両方に対するスペクトルクラスタリングを徹底的に検討した。
広く使われている2つのコーパスであるAMIとDIHARDに関する広範な実験により、ドメインミスマッチの存在下での話者ダイアリゼーションの性能傾向が明らかになった。
2つの異なる領域条件間の性能差がスペクトルクラスタリングの役割に起因することが観察された。
特に,他のモジュールを不一致に保ちながら,最適チューニングパラメータと話者数推定の相違がミスマッチに起因することを示す。
本研究では,話者ダイアリゼーション研究の今後の方向性について述べる。
関連論文リスト
- Robustness of Speech Separation Models for Similar-pitch Speakers [14.941946672578863]
単一チャンネル音声分離は,マルチスピーカ環境における音声認識システムを強化する上で重要な課題である。
本稿では,話者間のピッチ差が最小限である場合における最先端ニューラルネットワークモデルのロバスト性について検討する。
論文 参考訳(メタデータ) (2024-07-22T15:55:08Z) - In search of strong embedding extractors for speaker diarisation [49.7017388682077]
話者ダイアリゼーションにEEを採用する際の2つの重要な問題に対処する。
まず、性能向上に必要な特徴が話者検証とダイアリゼーションに異なるため、評価は簡単ではない。
広く採用されている話者検証評価プロトコルの性能向上は、ダイアリゼーション性能の向上に繋がらないことを示す。
重なり合う音声や話者変化の入力を認識するために,2番目の問題を緩和する2つのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-10-26T13:00:29Z) - Self-supervised Speaker Diarization [19.111219197011355]
本研究では、話者ダイアリゼーションのための教師なしディープラーニングモデルを提案する。
話者埋め込みは、同一話者と推定される隣接セグメントのペアを使用して、自己教師付きで訓練されたエンコーダによって表現される。
論文 参考訳(メタデータ) (2022-04-08T16:27:14Z) - Disentangled dimensionality reduction for noise-robust speaker
diarisation [30.383712356205084]
話者埋め込みはダイアリゼーションシステムの性能において重要な役割を果たす。
話者埋め込みは、しばしばノイズや残響などの急激な情報を捉え、性能に悪影響を及ぼす。
本稿では,話者埋め込みから急激な情報を解き放つことのできる新しい次元還元フレームワークを提案する。
また,背景雑音から話者コードが学習されるのを防止するために,音声・非音声指標も提案する。
論文 参考訳(メタデータ) (2021-10-07T12:19:09Z) - End-to-End Speaker Diarization as Post-Processing [64.12519350944572]
クラスタリングに基づくダイアリゼーション手法は、フレームを話者数のクラスタに分割する。
いくつかのエンドツーエンドのダイアリゼーション手法は、問題をマルチラベル分類として扱うことで重なり合う音声を処理できる。
本稿では,クラスタリングによる結果の処理後処理として,2話者のエンドツーエンドダイアリゼーション手法を提案する。
論文 参考訳(メタデータ) (2020-12-18T05:31:07Z) - Self-supervised Text-independent Speaker Verification using Prototypical
Momentum Contrastive Learning [58.14807331265752]
モーメントの対比学習によって話者埋め込みがより良く学習できることを示す。
自己監視フレームワークを、データのごく一部しかラベル付けされない半監視シナリオに一般化します。
論文 参考訳(メタデータ) (2020-12-13T23:23:39Z) - DEAAN: Disentangled Embedding and Adversarial Adaptation Network for
Robust Speaker Representation Learning [69.70594547377283]
話者関連およびドメイン固有の特徴を解き放つための新しいフレームワークを提案する。
我々のフレームワークは、より話者差別的でドメイン不変な話者表現を効果的に生成できる。
論文 参考訳(メタデータ) (2020-12-12T19:46:56Z) - Single channel voice separation for unknown number of speakers under
reverberant and noisy settings [106.48335929548875]
未知話者の音声分離のための統一ネットワークを提案する。
提案手法は話者分類枝とともに最適化された複数の分離ヘッドから構成される。
最大5人の話者が同時に話す新しい雑音と残響のデータセットを提示する。
論文 参考訳(メタデータ) (2020-11-04T14:59:14Z) - DNN Speaker Tracking with Embeddings [0.0]
埋め込み型話者追跡手法を提案する。
我々の設計は、典型的な話者検証PLDAを模倣した畳み込みニューラルネットワークに基づいている。
ベースラインシステムを話者追跡と類似させるため、非ターゲット話者を録音に追加した。
論文 参考訳(メタデータ) (2020-07-13T18:40:14Z) - Improving speaker discrimination of target speech extraction with
time-domain SpeakerBeam [100.95498268200777]
SpeakerBeamは、ターゲット話者の適応発話を利用して、声の特徴を抽出する。
SpeakerBeamは、同じジェンダーのミキシングのように、話者が似たような音声特性を持つときに失敗することがある。
実験により、これらの戦略は、特に同性混合において、音声抽出性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2020-01-23T05:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。