HySim: An Efficient Hybrid Similarity Measure for Patch Matching in Image Inpainting
- URL: http://arxiv.org/abs/2403.14292v1
- Date: Thu, 21 Mar 2024 10:59:44 GMT
- Title: HySim: An Efficient Hybrid Similarity Measure for Patch Matching in Image Inpainting
- Authors: Saad Noufel, Nadir Maaroufi, Mehdi Najib, Mohamed Bakhouya,
- Abstract summary: Inpainting, for filling missing image regions, is a crucial task in various applications, such as medical imaging and remote sensing.
This paper proposes an improved modeldriven approach relying on patch-based techniques.
Our approach deviates from the standard Sum of Squared Differences (SSD) similarity measure by introducing a Hybrid Similarity (HySim)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inpainting, for filling missing image regions, is a crucial task in various applications, such as medical imaging and remote sensing. Trending data-driven approaches efficiency, for image inpainting, often requires extensive data preprocessing. In this sense, there is still a need for model-driven approaches in case of application constrained with data availability and quality, especially for those related for time series forecasting using image inpainting techniques. This paper proposes an improved modeldriven approach relying on patch-based techniques. Our approach deviates from the standard Sum of Squared Differences (SSD) similarity measure by introducing a Hybrid Similarity (HySim), which combines both strengths of Chebychev and Minkowski distances. This hybridization enhances patch selection, leading to high-quality inpainting results with reduced mismatch errors. Experimental results proved the effectiveness of our approach against other model-driven techniques, such as diffusion or patch-based approaches, showcasing its effectiveness in achieving visually pleasing restorations.
Related papers
- A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
We introduce a simple, unified framework to handle diverse conditional generation tasks.
Our approach enables versatile capabilities via different inference-time sampling schemes.
Our model supports additional capabilities like non-spatially aligned and coarse conditioning.
arXiv Detail & Related papers (2024-10-15T09:41:43Z) - SpotDiffusion: A Fast Approach For Seamless Panorama Generation Over Time [7.532695984765271]
We present a novel approach to generate high-resolution images with generative models.
Our method shifts non-overlapping denoising windows over time, ensuring that seams in one timestep are corrected in the next.
Our method offers several key benefits, including improved computational efficiency and faster inference times.
arXiv Detail & Related papers (2024-07-22T09:44:35Z) - Coherent and Multi-modality Image Inpainting via Latent Space Optimization [61.99406669027195]
PILOT (intextbfPainting vtextbfIa textbfLatent textbfOptextbfTimization) is an optimization approach grounded on a novel textitsemantic centralization and textitbackground preservation loss.
Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background.
arXiv Detail & Related papers (2024-07-10T19:58:04Z) - Mitigating Data Consistency Induced Discrepancy in Cascaded Diffusion Models for Sparse-view CT Reconstruction [4.227116189483428]
This study introduces a novel Cascaded Diffusion with Discrepancy Mitigation framework.
It includes the low-quality image generation in latent space and the high-quality image generation in pixel space.
It minimizes computational costs by moving some inference steps from pixel space to latent space.
arXiv Detail & Related papers (2024-03-14T12:58:28Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Inter-Instance Similarity Modeling for Contrastive Learning [22.56316444504397]
We propose a novel image mix method, PatchMix, for contrastive learning in Vision Transformer (ViT)
Compared to the existing sample mix methods, our PatchMix can flexibly and efficiently mix more than two images.
Our proposed method significantly outperforms the previous state-of-the-art on both ImageNet-1K and CIFAR datasets.
arXiv Detail & Related papers (2023-06-21T13:03:47Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
Fine-tuning deep learning models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness.
We propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model.
arXiv Detail & Related papers (2023-03-06T11:51:28Z) - Paired Image-to-Image Translation Quality Assessment Using Multi-Method
Fusion [0.0]
This paper proposes a novel approach that combines signals of image quality between paired source and transformation to predict the latter's similarity with a hypothetical ground truth.
We trained a Multi-Method Fusion (MMF) model via an ensemble of gradient-boosted regressors to predict Deep Image Structure and Texture Similarity (DISTS)
Analysis revealed the task to be feature-constrained, introducing a trade-off at inference between metric time and prediction accuracy.
arXiv Detail & Related papers (2022-05-09T11:05:15Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.