SpikingResformer: Bridging ResNet and Vision Transformer in Spiking Neural Networks
- URL: http://arxiv.org/abs/2403.14302v2
- Date: Thu, 28 Mar 2024 05:13:43 GMT
- Title: SpikingResformer: Bridging ResNet and Vision Transformer in Spiking Neural Networks
- Authors: Xinyu Shi, Zecheng Hao, Zhaofei Yu,
- Abstract summary: We propose a novel spiking self-attention mechanism named Dual Spike Self-Attention (DSSA) with a reasonable scaling method.
Based on DSSA, we propose a novel spiking Vision Transformer architecture called SpikingResformer.
We show that SpikingResformer achieves higher accuracy with fewer parameters and lower energy consumption than other spiking Vision Transformer counterparts.
- Score: 22.665939536001797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable success of Vision Transformers in Artificial Neural Networks (ANNs) has led to a growing interest in incorporating the self-attention mechanism and transformer-based architecture into Spiking Neural Networks (SNNs). While existing methods propose spiking self-attention mechanisms that are compatible with SNNs, they lack reasonable scaling methods, and the overall architectures proposed by these methods suffer from a bottleneck in effectively extracting local features. To address these challenges, we propose a novel spiking self-attention mechanism named Dual Spike Self-Attention (DSSA) with a reasonable scaling method. Based on DSSA, we propose a novel spiking Vision Transformer architecture called SpikingResformer, which combines the ResNet-based multi-stage architecture with our proposed DSSA to improve both performance and energy efficiency while reducing parameters. Experimental results show that SpikingResformer achieves higher accuracy with fewer parameters and lower energy consumption than other spiking Vision Transformer counterparts. Notably, our SpikingResformer-L achieves 79.40% top-1 accuracy on ImageNet with 4 time-steps, which is the state-of-the-art result in the SNN field.
Related papers
- Combining Aggregated Attention and Transformer Architecture for Accurate and Efficient Performance of Spiking Neural Networks [44.145870290310356]
Spiking Neural Networks have attracted significant attention in recent years due to their distinctive low-power characteristics.
Transformers models, known for their powerful self-attention mechanisms and parallel processing capabilities, have demonstrated exceptional performance across various domains.
Despite the significant advantages of both SNNs and Transformers, directly combining the low-power benefits of SNNs with the high performance of Transformers remains challenging.
arXiv Detail & Related papers (2024-12-18T07:07:38Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Adaptive Calibration: A Unified Conversion Framework of Spiking Neural Networks [1.632439547798896]
Spiking Neural Networks (SNNs) have emerged as a promising energy-efficient alternative to traditional Artificial Neural Networks (ANNs)
This paper focuses on addressing the dual objectives of enhancing the performance and efficiency of SNNs through the established SNN conversion framework.
arXiv Detail & Related papers (2023-11-24T03:43:59Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - AutoST: Training-free Neural Architecture Search for Spiking
Transformers [14.791412391584064]
Spiking Transformers achieve both the energy efficiency of Spiking Neural Networks (SNNs) and the high capacity of Transformers.
Existing Spiking Transformer architectures exhibit a notable architectural gap, resulting in suboptimal performance.
We introduce AutoST, a training-free NAS method for Spiking Transformers, to rapidly identify high-performance Spiking Transformer architectures.
arXiv Detail & Related papers (2023-07-01T10:19:52Z) - Auto-Spikformer: Spikformer Architecture Search [22.332981906087785]
Self-attention mechanisms have been integrated into Spiking Neural Networks (SNNs)
Recent advancements in SNN architecture, such as Spikformer, have demonstrated promising outcomes.
We propose Auto-Spikformer, a one-shot Transformer Architecture Search (TAS) method, which automates the quest for an optimized Spikformer architecture.
arXiv Detail & Related papers (2023-06-01T15:35:26Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Spikformer: When Spiking Neural Network Meets Transformer [102.91330530210037]
We consider two biologically plausible structures, the Spiking Neural Network (SNN) and the self-attention mechanism.
We propose a novel Spiking Self Attention (SSA) as well as a powerful framework, named Spiking Transformer (Spikformer)
arXiv Detail & Related papers (2022-09-29T14:16:49Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.