FFT-based Selection and Optimization of Statistics for Robust Recognition of Severely Corrupted Images
- URL: http://arxiv.org/abs/2403.14335v1
- Date: Thu, 21 Mar 2024 12:01:54 GMT
- Title: FFT-based Selection and Optimization of Statistics for Robust Recognition of Severely Corrupted Images
- Authors: Elena Camuffo, Umberto Michieli, Jijoong Moon, Daehyun Kim, Mete Ozay,
- Abstract summary: This paper presents a novel approach to improve robustness of any classification model, especially on severely corrupted images.
Our method (FROST) employs high-frequency features to detect input image corruption type, and select layer-wise feature normalization statistics.
FROST provides the state-of-the-art results for different models and datasets, outperforming competitors on ImageNet-C by up to 37.1% relative gain.
- Score: 19.07004663565609
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Improving model robustness in case of corrupted images is among the key challenges to enable robust vision systems on smart devices, such as robotic agents. Particularly, robust test-time performance is imperative for most of the applications. This paper presents a novel approach to improve robustness of any classification model, especially on severely corrupted images. Our method (FROST) employs high-frequency features to detect input image corruption type, and select layer-wise feature normalization statistics. FROST provides the state-of-the-art results for different models and datasets, outperforming competitors on ImageNet-C by up to 37.1% relative gain, improving baseline of 40.9% mCE on severe corruptions.
Related papers
- Enhanced Model Robustness to Input Corruptions by Per-corruption Adaptation of Normalization Statistics [22.876222327262596]
We introduce Per-corruption Adaptation of Normalization statistics (PAN) to enhance the model robustness of vision systems.
Our approach entails three key components: (i) a corruption type identification module, (ii) dynamic adjustment of normalization layer statistics based on identified corruption type, and (iii) real-time update of these statistics according to input data.
arXiv Detail & Related papers (2024-07-08T23:20:18Z) - Dynamic Batch Norm Statistics Update for Natural Robustness [5.366500153474747]
We propose a unified framework consisting of a corruption-detection model and BN statistics update.
Our results demonstrate about 8% and 4% accuracy improvement on CIFAR10-C and ImageNet-C.
arXiv Detail & Related papers (2023-10-31T17:20:30Z) - Frequency-Based Vulnerability Analysis of Deep Learning Models against
Image Corruptions [48.34142457385199]
We present MUFIA, an algorithm designed to identify the specific types of corruptions that can cause models to fail.
We find that even state-of-the-art models trained to be robust against known common corruptions struggle against the low visibility-based corruptions crafted by MUFIA.
arXiv Detail & Related papers (2023-06-12T15:19:13Z) - A Survey on the Robustness of Computer Vision Models against Common Corruptions [3.6486148851646063]
Computer vision models are susceptible to changes in input images caused by sensor errors or extreme imaging environments.
These corruptions can significantly hinder the reliability of these models when deployed in real-world scenarios.
We present a comprehensive overview of methods that improve the robustness of computer vision models against common corruptions.
arXiv Detail & Related papers (2023-05-10T10:19:31Z) - Robo3D: Towards Robust and Reliable 3D Perception against Corruptions [58.306694836881235]
We present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios.
We consider eight corruption types stemming from severe weather conditions, external disturbances, and internal sensor failure.
We propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency.
arXiv Detail & Related papers (2023-03-30T17:59:17Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss)
DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution.
We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models.
arXiv Detail & Related papers (2022-01-04T08:30:09Z) - Improving robustness against common corruptions with frequency biased
models [112.65717928060195]
unseen image corruptions can cause a surprisingly large drop in performance.
Image corruption types have different characteristics in the frequency spectrum and would benefit from a targeted type of data augmentation.
We propose a new regularization scheme that minimizes the total variation (TV) of convolution feature-maps to increase high-frequency robustness.
arXiv Detail & Related papers (2021-03-30T10:44:50Z) - Revisiting Batch Normalization for Improving Corruption Robustness [85.20742045853738]
We interpret corruption robustness as a domain shift and propose to rectify batch normalization statistics for improving model robustness.
We find that simply estimating and adapting the BN statistics on a few representation samples, without retraining the model, improves the corruption robustness by a large margin.
arXiv Detail & Related papers (2020-10-07T19:56:47Z) - Inducing Predictive Uncertainty Estimation for Face Recognition [102.58180557181643]
We propose a method for generating image quality training data automatically from'mated-pairs' of face images.
We use the generated data to train a lightweight Predictive Confidence Network, termed as PCNet, for estimating the confidence score of a face image.
arXiv Detail & Related papers (2020-09-01T17:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.