Enhanced Model Robustness to Input Corruptions by Per-corruption Adaptation of Normalization Statistics
- URL: http://arxiv.org/abs/2407.06450v1
- Date: Mon, 8 Jul 2024 23:20:18 GMT
- Title: Enhanced Model Robustness to Input Corruptions by Per-corruption Adaptation of Normalization Statistics
- Authors: Elena Camuffo, Umberto Michieli, Simone Milani, Jijoong Moon, Mete Ozay,
- Abstract summary: We introduce Per-corruption Adaptation of Normalization statistics (PAN) to enhance the model robustness of vision systems.
Our approach entails three key components: (i) a corruption type identification module, (ii) dynamic adjustment of normalization layer statistics based on identified corruption type, and (iii) real-time update of these statistics according to input data.
- Score: 22.876222327262596
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Developing a reliable vision system is a fundamental challenge for robotic technologies (e.g., indoor service robots and outdoor autonomous robots) which can ensure reliable navigation even in challenging environments such as adverse weather conditions (e.g., fog, rain), poor lighting conditions (e.g., over/under exposure), or sensor degradation (e.g., blurring, noise), and can guarantee high performance in safety-critical functions. Current solutions proposed to improve model robustness usually rely on generic data augmentation techniques or employ costly test-time adaptation methods. In addition, most approaches focus on addressing a single vision task (typically, image recognition) utilising synthetic data. In this paper, we introduce Per-corruption Adaptation of Normalization statistics (PAN) to enhance the model robustness of vision systems. Our approach entails three key components: (i) a corruption type identification module, (ii) dynamic adjustment of normalization layer statistics based on identified corruption type, and (iii) real-time update of these statistics according to input data. PAN can integrate seamlessly with any convolutional model for enhanced accuracy in several robot vision tasks. In our experiments, PAN obtains robust performance improvement on challenging real-world corrupted image datasets (e.g., OpenLoris, ExDark, ACDC), where most of the current solutions tend to fail. Moreover, PAN outperforms the baseline models by 20-30% on synthetic benchmarks in object recognition tasks.
Related papers
- Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
We present RoboBEV, an extensive benchmark suite designed to evaluate the resilience of BEV algorithms.
We assess 33 state-of-the-art BEV-based perception models spanning tasks like detection, map segmentation, depth estimation, and occupancy prediction.
Our experimental results also underline the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
arXiv Detail & Related papers (2024-05-27T17:59:39Z) - PVF (Parameter Vulnerability Factor): A Scalable Metric for Understanding AI Vulnerability Against SDCs in Model Parameters [7.652441604508354]
Vulnerability Factor (PVF) is a metric aiming to standardize the quantification of AI model vulnerability against parameter corruptions.
PVF can provide pivotal insights to AI hardware designers in balancing the tradeoff between fault protection and performance/efficiency.
We present several use cases on applying PVF to three types of tasks/models during inference -- recommendation (DLRM), vision classification (CNN), and text classification (BERT)
arXiv Detail & Related papers (2024-05-02T21:23:34Z) - FFT-based Selection and Optimization of Statistics for Robust Recognition of Severely Corrupted Images [19.07004663565609]
This paper presents a novel approach to improve robustness of any classification model, especially on severely corrupted images.
Our method (FROST) employs high-frequency features to detect input image corruption type, and select layer-wise feature normalization statistics.
FROST provides the state-of-the-art results for different models and datasets, outperforming competitors on ImageNet-C by up to 37.1% relative gain.
arXiv Detail & Related papers (2024-03-21T12:01:54Z) - OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System [7.1083241462091165]
We introduce an external modality-guided data mining framework, primarily rooted in optical character recognition (OCR), to extract statistical features from images.
A key aspect of our approach is the alignment of external modality features, extracted using a single modality-aware model, with image features encoded by a convolutional neural network.
Our methodology considerably boosts the recall rate of the defect detection model and maintains high robustness even in challenging scenarios.
arXiv Detail & Related papers (2024-03-18T07:41:39Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - A Survey on the Robustness of Computer Vision Models against Common Corruptions [3.6486148851646063]
Computer vision models are susceptible to changes in input images caused by sensor errors or extreme imaging environments.
These corruptions can significantly hinder the reliability of these models when deployed in real-world scenarios.
We present a comprehensive overview of methods that improve the robustness of computer vision models against common corruptions.
arXiv Detail & Related papers (2023-05-10T10:19:31Z) - Robo3D: Towards Robust and Reliable 3D Perception against Corruptions [58.306694836881235]
We present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios.
We consider eight corruption types stemming from severe weather conditions, external disturbances, and internal sensor failure.
We propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency.
arXiv Detail & Related papers (2023-03-30T17:59:17Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
arXiv Detail & Related papers (2023-03-18T16:40:10Z) - On the Robustness of Quality Measures for GANs [136.18799984346248]
This work evaluates the robustness of quality measures of generative models such as Inception Score (IS) and Fr'echet Inception Distance (FID)
We show that such metrics can also be manipulated by additive pixel perturbations.
arXiv Detail & Related papers (2022-01-31T06:43:09Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
This paper discloses a novel visual inspection system for liquid crystal display (LCD), which is currently a dominant type in the FPD industry.
System is based on two cornerstones: robust/high-performance defect recognition model and cognitive visual inspection service architecture.
arXiv Detail & Related papers (2021-01-11T08:14:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.