論文の概要: OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2403.14418v1
- Date: Thu, 21 Mar 2024 14:06:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 13:59:14.695252
- Title: OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation
- Title(参考訳): OA-CNN: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation
- Authors: Bohao Peng, Xiaoyang Wu, Li Jiang, Yukang Chen, Hengshuang Zhao, Zhuotao Tian, Jiaya Jia,
- Abstract要約: 設計上の違いを再検討し、スパースCNNが達成できることの限界をテストする。
本稿では,このギャップを埋めるために,適応受容場(親和性)と適応関係という2つの重要な要素を提案する。
この調査により、軽量モジュールを統合するネットワークのファミリーであるOmni-Adaptive 3D CNN(OA-CNN)が開発された。
- 参考スコア(独自算出の注目度): 70.17681136234202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The booming of 3D recognition in the 2020s began with the introduction of point cloud transformers. They quickly overwhelmed sparse CNNs and became state-of-the-art models, especially in 3D semantic segmentation. However, sparse CNNs are still valuable networks, due to their efficiency treasure, and ease of application. In this work, we reexamine the design distinctions and test the limits of what a sparse CNN can achieve. We discover that the key credit to the performance difference is adaptivity. Specifically, we propose two key components, i.e., adaptive receptive fields (spatially) and adaptive relation, to bridge the gap. This exploration led to the creation of Omni-Adaptive 3D CNNs (OA-CNNs), a family of networks that integrates a lightweight module to greatly enhance the adaptivity of sparse CNNs at minimal computational cost. Without any self-attention modules, OA-CNNs favorably surpass point transformers in terms of accuracy in both indoor and outdoor scenes, with much less latency and memory cost. Notably, it achieves 76.1%, 78.9%, and 70.6% mIoU on ScanNet v2, nuScenes, and SemanticKITTI validation benchmarks respectively, while maintaining at most 5x better speed than transformer counterparts. This revelation highlights the potential of pure sparse CNNs to outperform transformer-related networks.
- Abstract(参考訳): 2020年代の3D認識のブームは、ポイントクラウドトランスフォーマーの導入から始まった。
彼らはすぐにスパースCNNを圧倒し、特に3Dセマンティックセグメンテーションにおいて最先端のモデルとなった。
しかし、その効率性や使いやすさから、スパースCNNはいまだに貴重なネットワークである。
本研究では,設計上の違いを再検討し,スパースCNNが達成できる限界を検証する。
パフォーマンスの違いの鍵となるのは適応性であることに気付きました。
具体的には、このギャップを埋めるために、適応受容場(親和性)と適応関係という2つの重要な要素を提案する。
この探索によりOmni-Adaptive 3D CNN (OA-CNNs) が開発された。これは軽量モジュールを統合し、最小計算コストでスパースCNNの適応性を大幅に向上させるネットワークのファミリーである。
自己アテンションモジュールがなければ、OA-CNNは屋内と屋外の両方でポイントトランスフォーマーをはるかに上回り、レイテンシとメモリコストが大幅に削減される。
特に、ScanNet v2、nuScenes、SemanticKITTIの検証ベンチマークで76.1%、78.9%、70.6%のmIoUを達成した。
この啓示は、トランスフォーマー関連ネットワークを上回る純粋なスパースCNNの可能性を強調している。
関連論文リスト
- Lightweight Real-time Semantic Segmentation Network with Efficient
Transformer and CNN [34.020978009518245]
LETNetと呼ばれる軽量なリアルタイムセマンティックセグメンテーションネットワークを提案する。
LETNetは、U字型のCNNとTransformerをカプセル埋め込みスタイルで効果的に組み合わせ、それぞれの欠陥を補う。
挑戦的なデータセットで実施された実験は、LETNetが精度と効率のバランスにおいて優れたパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2023-02-21T07:16:53Z) - InternImage: Exploring Large-Scale Vision Foundation Models with
Deformable Convolutions [95.94629864981091]
この研究は、パラメータの増加やViTsのようなトレーニングデータから得られるインターンイメージと呼ばれる、CNNベースの新しい大規模ファンデーションモデルを提案する。
提案されたInternImageは、従来のCNNの厳格な帰納バイアスを低減し、ViTのような大規模データから、より強く堅牢なパターンを学習できるようにする。
論文 参考訳(メタデータ) (2022-11-10T18:59:04Z) - Lightweight Vision Transformer with Cross Feature Attention [6.103065659061625]
畳み込みニューラルネットワーク(CNN)は空間的帰納バイアスを利用して視覚表現を学習する。
ViTは自己認識メカニズムを使ってグローバルな表現を学ぶことができるが、通常は重く、モバイルデバイスには適さない。
我々はトランスのコスト削減のためにクロスフィーチャーアテンション(XFA)を提案し、効率的なモバイルCNNを組み合わせて新しい軽量CNN-ViTハイブリッドモデルXFormerを構築した。
論文 参考訳(メタデータ) (2022-07-15T03:27:13Z) - Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs [148.0476219278875]
現代畳み込みニューラルネットワーク(CNN)における大規模カーネル設計の再検討
本稿では、視覚変換器(ViT)の最近の進歩に触発されて、小さなカーネルのスタックではなく、少数の大きな畳み込みカーネルを使うことが、より強力なパラダイムであることを実証する。
本稿では,カーネルサイズが31x31の純粋なCNNアーキテクチャであるRepLKNetを提案する。
論文 参考訳(メタデータ) (2022-03-13T17:22:44Z) - Transformed CNNs: recasting pre-trained convolutional layers with
self-attention [17.96659165573821]
視覚変換器(ViT)は、畳み込みネットワーク(CNN)の強力な代替手段として登場した。
本研究では、これらレイヤを畳み込み層として初期化することによって、これらのレイヤのトレーニングに要する時間を短縮するアイデアについて検討する。
微調整は50回しか行われず、結果として得られたT-CNNの性能は著しく向上した。
論文 参考訳(メタデータ) (2021-06-10T14:56:10Z) - Container: Context Aggregation Network [83.12004501984043]
最近の発見は、従来の畳み込みやトランスフォーマーコンポーネントを使わずに、シンプルなベースのソリューションが効果的な視覚表現を生成できることを示している。
マルチヘッドコンテキストアグリゲーションのための汎用ビルディングブロックCONText Ion NERtwokを提案する。
より大規模な入力画像解像度に依存する下流タスクにはスケールしないTransformerベースの手法とは対照的に、当社の効率的なネットワークであるModellightは、オブジェクト検出やインスタンスセグメンテーションネットワークに利用することができる。
論文 参考訳(メタデータ) (2021-06-02T18:09:11Z) - Continual 3D Convolutional Neural Networks for Real-time Processing of
Videos [93.73198973454944]
連続3次元コンテンポラルニューラルネットワーク(Co3D CNN)について紹介する。
Co3D CNNはクリップ・バイ・クリップではなく、フレーム・バイ・フレームで動画を処理する。
本研究では,既存の映像認識モデルの重みを初期化したCo3D CNNを用いて,フレームワイズ計算における浮動小数点演算を10.0-12.4倍削減し,Kinetics-400の精度を2.3-3.8倍に向上したことを示す。
論文 参考訳(メタデータ) (2021-05-31T18:30:52Z) - 3D CNNs with Adaptive Temporal Feature Resolutions [83.43776851586351]
similarity Guided Sampling (SGS)モジュールは既存のCNNアーキテクチャにプラグインできる。
SGSは、時間的特徴の類似性を学び、類似した特徴をまとめることで、3D CNNに権限を与える。
評価の結果,提案モジュールは精度を保ちながら計算コスト(GFLOP)を半分に減らし,最先端化を実現していることがわかった。
論文 参考訳(メタデータ) (2020-11-17T14:34:05Z) - MGIC: Multigrid-in-Channels Neural Network Architectures [8.459177309094688]
本稿では,標準畳み込みニューラルネットワーク(CNN)におけるチャネル数に関して,パラメータ数の2次成長に対処するマルチグリッド・イン・チャネル手法を提案する。
近年の軽量CNNの成功にともなうCNNの冗長性に対処する。
論文 参考訳(メタデータ) (2020-11-17T11:29:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。