Detoxifying Large Language Models via Knowledge Editing
- URL: http://arxiv.org/abs/2403.14472v5
- Date: Tue, 28 May 2024 09:11:25 GMT
- Title: Detoxifying Large Language Models via Knowledge Editing
- Authors: Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi, Shumin Deng, Yunzhi Yao, Qishen Zhang, Linyi Yang, Jindong Wang, Huajun Chen,
- Abstract summary: This paper investigates using knowledge editing techniques to detoxify Large Language Models (LLMs)
We construct a benchmark, SafeEdit, which covers nine unsafe categories with various powerful attack prompts.
We conduct experiments with several knowledge editing approaches, indicating that knowledge editing has the potential to detoxify LLMs with a limited impact on general performance efficiently.
- Score: 57.0669577257301
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates using knowledge editing techniques to detoxify Large Language Models (LLMs). We construct a benchmark, SafeEdit, which covers nine unsafe categories with various powerful attack prompts and equips comprehensive metrics for systematic evaluation. We conduct experiments with several knowledge editing approaches, indicating that knowledge editing has the potential to detoxify LLMs with a limited impact on general performance efficiently. Then, we propose a simple yet effective baseline, dubbed Detoxifying with Intraoperative Neural Monitoring (DINM), to diminish the toxicity of LLMs within a few tuning steps via only one instance. We further provide an in-depth analysis of the internal mechanism for various detoxifying approaches, demonstrating that previous methods like SFT and DPO may merely suppress the activations of toxic parameters, while DINM mitigates the toxicity of the toxic parameters to a certain extent, making permanent adjustments. We hope that these insights could shed light on future work of developing detoxifying approaches and the underlying knowledge mechanisms of LLMs. Code and benchmark are available at https://github.com/zjunlp/EasyEdit.
Related papers
- Large Language Models can be Strong Self-Detoxifiers [82.6594169242814]
Self-disciplined Autoregressive Sampling (SASA) is a lightweight controlled decoding algorithm for toxicity reduction of large language models (LLMs)
SASA tracks the margin of the current output to steer the generation away from the toxic subspace, by adjusting the autoregressive sampling strategy.
evaluated on LLMs of different scale and nature, namely Llama-3.1-Instruct (8B), Llama-2 (7B), and GPT2-L models with the RealToxicityPrompts, BOLD, and AttaQ benchmarks.
arXiv Detail & Related papers (2024-10-04T17:45:15Z) - Precision Knowledge Editing: Enhancing Safety in Large Language Models [4.241100280846233]
This work introduces Precision Knowledge Editing (PKE), an advanced technique that builds upon existing knowledge editing methods.
PKE achieves finer granularity in toxic content management compared to previous methods like Detoxifying Instance Neuron Modification (DINM)
Our experiments demonstrate that PKE significantly reduces the attack success rate (ASR) across various models.
arXiv Detail & Related papers (2024-10-02T23:15:53Z) - Model Surgery: Modulating LLM's Behavior Via Simple Parameter Editing [63.20133320524577]
Large Language Models (LLMs) have demonstrated great potential as generalist assistants.
It is crucial that these models exhibit desirable behavioral traits, such as non-toxicity and resilience against jailbreak attempts.
In this paper, we observe that directly editing a small subset of parameters can effectively modulate specific behaviors of LLMs.
arXiv Detail & Related papers (2024-07-11T17:52:03Z) - Realistic Evaluation of Toxicity in Large Language Models [28.580995165272086]
Large language models (LLMs) have become integral to our professional and daily lives.
The huge amount of data which endows them with vast and diverse knowledge exposes them to the inevitable toxicity and bias.
This paper introduces the new Thoroughly Engineered Toxicity dataset, comprising manually crafted prompts.
arXiv Detail & Related papers (2024-05-17T09:42:59Z) - Unveiling the Implicit Toxicity in Large Language Models [77.90933074675543]
The open-endedness of large language models (LLMs) combined with their impressive capabilities may lead to new safety issues when being exploited for malicious use.
We show that LLMs can generate diverse implicit toxic outputs that are exceptionally difficult to detect via simply zero-shot prompting.
We propose a reinforcement learning (RL) based attacking method to further induce the implicit toxicity in LLMs.
arXiv Detail & Related papers (2023-11-29T06:42:36Z) - Self-Detoxifying Language Models via Toxification Reversal [11.238212967733165]
Language model detoxification aims to minimize the risk of generating offensive or harmful content in pretrained language models (PLMs)
We propose a more lightweight approach that enables the PLM itself to achieve "self-detoxification"
Our method is built upon the observation that prepending a negative steering prompt can effectively induce PLMs to generate toxic content.
arXiv Detail & Related papers (2023-10-14T12:51:38Z) - Detoxifying Text with MaRCo: Controllable Revision with Experts and
Anti-Experts [57.38912708076231]
We introduce MaRCo, a detoxification algorithm that combines controllable generation and text rewriting methods.
MaRCo uses likelihoods under a non-toxic LM and a toxic LM to find candidate words to mask and potentially replace.
We evaluate our method on several subtle toxicity and microaggressions datasets, and show that it not only outperforms baselines on automatic metrics, but MaRCo's rewrites are preferred 2.1 $times$ more in human evaluation.
arXiv Detail & Related papers (2022-12-20T18:50:00Z) - Leashing the Inner Demons: Self-Detoxification for Language Models [13.576289320208511]
Language models (LMs) can reproduce (or amplify) toxic language seen during training.
We analyze the impact of prompts, decoding strategies and training corpora on the output.
We propose a simple yet effective method for language models to "detoxify" themselves without an additional large corpus or external discriminator.
arXiv Detail & Related papers (2022-03-06T23:55:12Z) - RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models [93.151822563361]
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment.
We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration.
arXiv Detail & Related papers (2020-09-24T03:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.