Realistic Evaluation of Toxicity in Large Language Models
- URL: http://arxiv.org/abs/2405.10659v2
- Date: Mon, 20 May 2024 14:27:37 GMT
- Title: Realistic Evaluation of Toxicity in Large Language Models
- Authors: Tinh Son Luong, Thanh-Thien Le, Linh Ngo Van, Thien Huu Nguyen,
- Abstract summary: Large language models (LLMs) have become integral to our professional and daily lives.
The huge amount of data which endows them with vast and diverse knowledge exposes them to the inevitable toxicity and bias.
This paper introduces the new Thoroughly Engineered Toxicity dataset, comprising manually crafted prompts.
- Score: 28.580995165272086
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large language models (LLMs) have become integral to our professional workflows and daily lives. Nevertheless, these machine companions of ours have a critical flaw: the huge amount of data which endows them with vast and diverse knowledge, also exposes them to the inevitable toxicity and bias. While most LLMs incorporate defense mechanisms to prevent the generation of harmful content, these safeguards can be easily bypassed with minimal prompt engineering. In this paper, we introduce the new Thoroughly Engineered Toxicity (TET) dataset, comprising manually crafted prompts designed to nullify the protective layers of such models. Through extensive evaluations, we demonstrate the pivotal role of TET in providing a rigorous benchmark for evaluation of toxicity awareness in several popular LLMs: it highlights the toxicity in the LLMs that might remain hidden when using normal prompts, thus revealing subtler issues in their behavior.
Related papers
- Large Language Models can be Strong Self-Detoxifiers [82.6594169242814]
Self-disciplined Autoregressive Sampling (SASA) is a lightweight controlled decoding algorithm for toxicity reduction of large language models (LLMs)
SASA tracks the margin of the current output to steer the generation away from the toxic subspace, by adjusting the autoregressive sampling strategy.
evaluated on LLMs of different scale and nature, namely Llama-3.1-Instruct (8B), Llama-2 (7B), and GPT2-L models with the RealToxicityPrompts, BOLD, and AttaQ benchmarks.
arXiv Detail & Related papers (2024-10-04T17:45:15Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
Large language models show early signs of artificial general intelligence but struggle with hallucinations.
One promising solution is to store external knowledge as embeddings, aiding LLMs in retrieval-augmented generation.
Recent studies experimentally showed that the original text can be partially reconstructed from text embeddings by pre-trained language models.
arXiv Detail & Related papers (2024-04-25T13:10:48Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Detoxifying Large Language Models via Knowledge Editing [57.0669577257301]
This paper investigates using knowledge editing techniques to detoxify Large Language Models (LLMs)
We construct a benchmark, SafeEdit, which covers nine unsafe categories with various powerful attack prompts.
We conduct experiments with several knowledge editing approaches, indicating that knowledge editing has the potential to detoxify LLMs with a limited impact on general performance efficiently.
arXiv Detail & Related papers (2024-03-21T15:18:30Z) - Efficient Toxic Content Detection by Bootstrapping and Distilling Large
Language Models [10.490147336936504]
Large Language Models (LLMs) have shown promise in toxic content detection due to their superior zero-shot and few-shot in-Thought learning ability.
We propose BD-LLM, a novel and efficient approach to bootstrapping and Distilling LLMs for toxic content detection.
arXiv Detail & Related papers (2023-12-13T17:22:19Z) - Forcing Generative Models to Degenerate Ones: The Power of Data
Poisoning Attacks [10.732558183444985]
Malicious actors can covertly exploit large language models (LLMs) vulnerabilities through poisoning attacks aimed at generating undesirable outputs.
This paper explores various poisoning techniques to assess their effectiveness across a range of generative tasks.
We show that it is possible to successfully poison an LLM during the fine-tuning stage using as little as 1% of the total tuning data samples.
arXiv Detail & Related papers (2023-12-07T23:26:06Z) - Unveiling the Implicit Toxicity in Large Language Models [77.90933074675543]
The open-endedness of large language models (LLMs) combined with their impressive capabilities may lead to new safety issues when being exploited for malicious use.
We show that LLMs can generate diverse implicit toxic outputs that are exceptionally difficult to detect via simply zero-shot prompting.
We propose a reinforcement learning (RL) based attacking method to further induce the implicit toxicity in LLMs.
arXiv Detail & Related papers (2023-11-29T06:42:36Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
This paper collects the first open-source dataset to evaluate safeguards in large language models.
We train several BERT-like classifiers to achieve results comparable with GPT-4 on automatic safety evaluation.
arXiv Detail & Related papers (2023-08-25T14:02:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.