Dynamic Explanation Emphasis in Human-XAI Interaction with Communication Robot
- URL: http://arxiv.org/abs/2403.14550v1
- Date: Thu, 21 Mar 2024 16:50:12 GMT
- Title: Dynamic Explanation Emphasis in Human-XAI Interaction with Communication Robot
- Authors: Yosuke Fukuchi, Seiji Yamada,
- Abstract summary: DynEmph is a method for a communication robot to decide where to emphasize XAI-generated explanations with physical expressions.
It predicts the effect of emphasizing certain points on a user and aims to minimize the expected difference between predicted user decisions and AI-suggested ones.
- Score: 2.6396287656676725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication robots have the potential to contribute to effective human-XAI interaction as an interface that goes beyond textual or graphical explanations. One of their strengths is that they can use physical and vocal expressions to add detailed nuances to explanations. However, it is not clear how a robot can apply such expressions, or in particular, how we can develop a strategy to adaptively use such expressions depending on the task and user in dynamic interactions. To address this question, this paper proposes DynEmph, a method for a communication robot to decide where to emphasize XAI-generated explanations with physical expressions. It predicts the effect of emphasizing certain points on a user and aims to minimize the expected difference between predicted user decisions and AI-suggested ones. DynEmph features a strategy for deciding where to emphasize in a data-driven manner, relieving engineers from the need to manually design a strategy. We further conducted experiments to investigate how emphasis selection strategies affect the performance of user decisions. The results suggest that, while a naive strategy (emphasizing explanations for an AI's most probable class) does not necessarily work better, DynEmph effectively guides users to better decisions under the condition that the performance of the AI suggestion is high.
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Study on the Helpfulness of Explainable Artificial Intelligence [0.0]
Legal, business, and ethical requirements motivate using effective XAI.
We propose to evaluate XAI methods via the user's ability to successfully perform a proxy task.
In other words, we address the helpfulness of XAI for human decision-making.
arXiv Detail & Related papers (2024-10-14T14:03:52Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
Black-box AI systems can lead to liability and accountability issues when they produce an incorrect decision.
Explainable AI (XAI) seeks to bridge the knowledge gap, between developers and end-users.
arXiv Detail & Related papers (2023-01-13T01:08:49Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Behaviour Trees for Conversational Explanation Experiences [1.5257668132713955]
This paper focuses on how users interact with an XAI system to fulfil multiple explanation needs satisfied by an explanation strategy.
We model the interactive explanation experience as a dialogue model.
An evaluation with a real-world use case shows that BTs have a number of properties that lend naturally to modelling and capturing explanation experiences.
arXiv Detail & Related papers (2022-11-11T18:39:38Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
We present a user-centered persona concept to evaluate explainable AI (XAI)
Results show that users' demographics and personality, as well as the type of explanation, impact explanation preferences.
Our insights bring an interactive, human-centered XAI closer to practical application.
arXiv Detail & Related papers (2022-10-07T12:51:27Z) - Evaluating Human-like Explanations for Robot Actions in Reinforcement
Learning Scenarios [1.671353192305391]
We make use of human-like explanations built from the probability of success to complete the goal that an autonomous robot shows after performing an action.
These explanations are intended to be understood by people who have no or very little experience with artificial intelligence methods.
arXiv Detail & Related papers (2022-07-07T10:40:24Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - Who is this Explanation for? Human Intelligence and Knowledge Graphs for
eXplainable AI [0.0]
We focus on the contributions that Human Intelligence can bring to eXplainable AI.
We call for a better interplay between Knowledge Representation and Reasoning, Social Sciences, Human Computation and Human-Machine Cooperation research.
arXiv Detail & Related papers (2020-05-27T10:47:15Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.