AI Fairness in Practice
- URL: http://arxiv.org/abs/2403.14636v1
- Date: Mon, 19 Feb 2024 23:02:56 GMT
- Title: AI Fairness in Practice
- Authors: David Leslie, Cami Rincon, Morgan Briggs, Antonella Perini, Smera Jayadeva, Ann Borda, SJ Bennett, Christopher Burr, Mhairi Aitken, Michael Katell, Claudia Fischer, Janis Wong, Ismael Kherroubi Garcia,
- Abstract summary: There is a broad spectrum of views across society on what the concept of fairness means and how it should be put to practice.
This workbook explores how a context-based approach to understanding AI Fairness can help project teams better identify, mitigate, and manage the many ways that unfair bias and discrimination can crop up across the AI project workflow.
- Score: 0.46671368497079174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reaching consensus on a commonly accepted definition of AI Fairness has long been a central challenge in AI ethics and governance. There is a broad spectrum of views across society on what the concept of fairness means and how it should best be put to practice. In this workbook, we tackle this challenge by exploring how a context-based and society-centred approach to understanding AI Fairness can help project teams better identify, mitigate, and manage the many ways that unfair bias and discrimination can crop up across the AI project workflow. We begin by exploring how, despite the plurality of understandings about the meaning of fairness, priorities of equality and non-discrimination have come to constitute the broadly accepted core of its application as a practical principle. We focus on how these priorities manifest in the form of equal protection from direct and indirect discrimination and from discriminatory harassment. These elements form ethical and legal criteria based upon which instances of unfair bias and discrimination can be identified and mitigated across the AI project workflow. We then take a deeper dive into how the different contexts of the AI project lifecycle give rise to different fairness concerns. This allows us to identify several types of AI Fairness (Data Fairness, Application Fairness, Model Design and Development Fairness, Metric-Based Fairness, System Implementation Fairness, and Ecosystem Fairness) that form the basis of a multi-lens approach to bias identification, mitigation, and management. Building on this, we discuss how to put the principle of AI Fairness into practice across the AI project workflow through Bias Self-Assessment and Bias Risk Management as well as through the documentation of metric-based fairness criteria in a Fairness Position Statement.
Related papers
- Fair by design: A sociotechnical approach to justifying the fairness of AI-enabled systems across the lifecycle [0.8164978442203773]
Fairness is one of the most commonly identified ethical principles in existing AI guidelines.
The development of fair AI-enabled systems is required by new and emerging AI regulation.
arXiv Detail & Related papers (2024-06-13T12:03:29Z) - The Impossibility of Fair LLMs [59.424918263776284]
The need for fair AI is increasingly clear in the era of large language models (LLMs)
We review the technical frameworks that machine learning researchers have used to evaluate fairness.
We develop guidelines for the more realistic goal of achieving fairness in particular use cases.
arXiv Detail & Related papers (2024-05-28T04:36:15Z) - Fairness in AI: challenges in bridging the gap between algorithms and law [2.651076518493962]
We identify best practices and strategies for the specification and adoption of fairness definitions and algorithms in real-world systems and use cases.
We introduce a set of core criteria that need to be taken into account when selecting a specific fairness definition for real-world use case applications.
arXiv Detail & Related papers (2024-04-30T08:59:00Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
We propose a novel taxonomy for bias evaluation of discriminative foundation models, such as Contrastive Language-Pretraining (CLIP)
We then systematically evaluate existing methods for mitigating bias in these models with respect to our taxonomy.
Specifically, we evaluate OpenAI's CLIP and OpenCLIP models for key applications, such as zero-shot classification, image retrieval and image captioning.
arXiv Detail & Related papers (2023-10-18T10:32:39Z) - Factoring the Matrix of Domination: A Critical Review and Reimagination
of Intersectionality in AI Fairness [55.037030060643126]
Intersectionality is a critical framework that allows us to examine how social inequalities persist.
We argue that adopting intersectionality as an analytical framework is pivotal to effectively operationalizing fairness.
arXiv Detail & Related papers (2023-03-16T21:02:09Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Legal perspective on possible fairness measures - A legal discussion
using the example of hiring decisions (preprint) [0.0]
We explain the different kinds of fairness concepts that might be applicable for the specific application of hiring decisions.
We analyze their pros and cons with regard to the respective fairness interpretation and evaluate them from a legal perspective.
arXiv Detail & Related papers (2021-08-16T06:41:39Z) - Explaining how your AI system is fair [3.723553383515688]
We propose to use a decision tree as means to explain and justify the implemented kind of fairness to the end users.
We argue that specifying "fairness" for a given use case is the best way forward to maintain confidence in AI systems.
arXiv Detail & Related papers (2021-05-03T07:52:56Z) - Getting Fairness Right: Towards a Toolbox for Practitioners [2.4364387374267427]
The potential risk of AI systems unintentionally embedding and reproducing bias has attracted the attention of machine learning practitioners and society at large.
This paper proposes to draft a toolbox which helps practitioners to ensure fair AI practices.
arXiv Detail & Related papers (2020-03-15T20:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.